Utskrift av maxsumma ökande efterföljd

Utskrift av maxsumma ökande efterföljd
Prova det på GfG Practice

Problemet med Maximum Sum Increasing Subsequence är att hitta den maximala summasubsekvensen för en given sekvens så att alla element i undersekvensen sorteras i ökande ordning.

Exempel:  

    Input:      [1 101 2 3 100 4 5]   
Output: [1 2 3 100]

Input: [3 4 5 10]
Output: [3 4 5 10]

Input: [10 5 4 3]
Output: [10]

Input: [3 2 6 4 5 1]
Output: [3 4 5]

I tidigare inlägg har vi diskuterat problemet med den maximala summan som ökar efterföljden. Men inlägget omfattade endast kod som gällde att hitta den maximala summan av ökande efterföljd men inte till konstruktionen av efterföljd. I det här inlägget kommer vi att diskutera hur man konstruerar Maximum Sum Increasing Subsequence själv.

Låt arr[0..n-1] vara inmatningsmatrisen. Vi definierar vektor L så att L[i] i sig själv är en vektor som lagrar Maximum Summa ökande delsekvens av arr[0..i] som slutar med arr[i]. Därför kan för index i L[i] skrivas rekursivt som 

 L[0] = {arr[0]}   
L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i]
= arr[i] if there is no j such that arr[j] < arr[i]


Till exempel för array [3 2 6 4 5 1] 

 L[0]: 3   
L[1]: 2
L[2]: 3 6
L[3]: 3 4
L[4]: 3 4 5
L[5]: 1


Nedan är implementeringen av ovanstående idé – 

C++
   /* Dynamic Programming solution to construct    Maximum Sum Increasing Subsequence */   #include          #include         using     namespace     std  ;   // Utility function to calculate sum of all   // vector elements   int     findSum  (  vector   <  int  >     arr  )   {      int     sum     =     0  ;      for     (  int     i     :     arr  )      sum     +=     i  ;      return     sum  ;   }   // Function to construct Maximum Sum Increasing   // Subsequence   void     printMaxSumIS  (  int     arr  []     int     n  )   {      // L[i] - The Maximum Sum Increasing      // Subsequence that ends with arr[i]      vector   <  vector   <  int  >     >     L  (  n  );      // L[0] is equal to arr[0]      L  [  0  ].  push_back  (  arr  [  0  ]);      // start from index 1      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      // for every j less than i      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )     {      /* L[i] = {MaxSum(L[j])} + arr[i]    where j  < i and arr[j]  < arr[i] */      if     ((  arr  [  i  ]     >     arr  [  j  ])      &&     (  findSum  (  L  [  i  ])      <     findSum  (  L  [  j  ])))      L  [  i  ]     =     L  [  j  ];      }      // L[i] ends with arr[i]      L  [  i  ].  push_back  (  arr  [  i  ]);      // L[i] now stores Maximum Sum Increasing      // Subsequence of arr[0..i] that ends with      // arr[i]      }      vector   <  int  >     res     =     L  [  0  ];      // find max      for     (  vector   <  int  >     x     :     L  )      if     (  findSum  (  x  )     >     findSum  (  res  ))      res     =     x  ;      // max will contain result      for     (  int     i     :     res  )      cout      < <     i      < <     ' '  ;      cout      < <     endl  ;   }   // Driver Code   int     main  ()   {      int     arr  []     =     {     3       2       6       4       5       1     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      // construct and print Max Sum IS of arr      printMaxSumIS  (  arr       n  );      return     0  ;   }   
Java
   /* Dynamic Programming solution to construct   Maximum Sum Increasing Subsequence */   import     java.util.*  ;   class   GFG     {      // Utility function to calculate sum of all      // vector elements      static     int     findSum  (  Vector   <  Integer  >     arr  )      {      int     sum     =     0  ;      for     (  int     i     :     arr  )      sum     +=     i  ;      return     sum  ;      }      // Function to construct Maximum Sum Increasing      // Subsequence      static     void     printMaxSumIs  (  int  []     arr       int     n  )      {      // L[i] - The Maximum Sum Increasing      // Subsequence that ends with arr[i]      @SuppressWarnings  (  'unchecked'  )      Vector   <  Integer  >[]     L     =     new     Vector  [  n  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      L  [  i  ]     =     new     Vector   <>  ();      // L[0] is equal to arr[0]      L  [  0  ]  .  add  (  arr  [  0  ]  );      // start from index 1      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      // for every j less than i      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )     {      /*    * L[i] = {MaxSum(L[j])} + arr[i]    where j  < i and arr[j]  < arr[i]    */      if     ((  arr  [  i  ]     >     arr  [  j  ]  )      &&     (  findSum  (  L  [  i  ]  )      <     findSum  (  L  [  j  ]  )))     {      for     (  int     k     :     L  [  j  ]  )      if     (  !  L  [  i  ]  .  contains  (  k  ))      L  [  i  ]  .  add  (  k  );      }      }      // L[i] ends with arr[i]      L  [  i  ]  .  add  (  arr  [  i  ]  );      // L[i] now stores Maximum Sum Increasing      // Subsequence of arr[0..i] that ends with      // arr[i]      }      Vector   <  Integer  >     res     =     new     Vector   <>  (  L  [  0  ]  );      // res = L[0];      // find max      for     (  Vector   <  Integer  >     x     :     L  )      if     (  findSum  (  x  )     >     findSum  (  res  ))      res     =     x  ;      // max will contain result      for     (  int     i     :     res  )      System  .  out  .  print  (  i     +     ' '  );      System  .  out  .  println  ();      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      int  []     arr     =     {     3       2       6       4       5       1     };      int     n     =     arr  .  length  ;      // construct and print Max Sum IS of arr      printMaxSumIs  (  arr       n  );      }   }   // This code is contributed by   // sanjeev2552   
Python
   # Dynamic Programming solution to construct   # Maximum Sum Increasing Subsequence */   # Utility function to calculate sum of all   # vector elements   def   findSum  (  arr  ):   summ   =   0   for   i   in   arr  :   summ   +=   i   return   summ   # Function to construct Maximum Sum Increasing   # Subsequence   def   printMaxSumIS  (  arr     n  ):   # L[i] - The Maximum Sum Increasing   # Subsequence that ends with arr[i]   L   =   [[]   for   i   in   range  (  n  )]   # L[0] is equal to arr[0]   L  [  0  ]  .  append  (  arr  [  0  ])   # start from index 1   for   i   in   range  (  1     n  ):   # for every j less than i   for   j   in   range  (  i  ):   # L[i] = {MaxSum(L[j])} + arr[i]   # where j  < i and arr[j]  < arr[i]   if   ((  arr  [  i  ]   >   arr  [  j  ])   and   (  findSum  (  L  [  i  ])    <   findSum  (  L  [  j  ]))):   for   e   in   L  [  j  ]:   if   e   not   in   L  [  i  ]:   L  [  i  ]  .  append  (  e  )   # L[i] ends with arr[i]   L  [  i  ]  .  append  (  arr  [  i  ])   # L[i] now stores Maximum Sum Increasing   # Subsequence of arr[0..i] that ends with   # arr[i]   res   =   L  [  0  ]   # find max   for   x   in   L  :   if   (  findSum  (  x  )   >   findSum  (  res  )):   res   =   x   # max will contain result   for   i   in   res  :   print  (  i     end  =  ' '  )   # Driver Code   arr   =   [  3     2     6     4     5     1  ]   n   =   len  (  arr  )   # construct and prMax Sum IS of arr   printMaxSumIS  (  arr     n  )   # This code is contributed by Mohit Kumar   
C#
   /* Dynamic Programming solution to construct   Maximum Sum Increasing Subsequence */   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      // Utility function to calculate sum of all      // vector elements      static     int     findSum  (  List   <  int  >     arr  )      {      int     sum     =     0  ;      foreach  (  int     i     in     arr  )     sum     +=     i  ;      return     sum  ;      }      // Function to construct Maximum Sum Increasing      // Subsequence      static     void     printMaxSumIs  (  int  []     arr       int     n  )      {      // L[i] - The Maximum Sum Increasing      // Subsequence that ends with arr[i]      List   <  int  >  []     L     =     new     List   <  int  >  [     n     ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      L  [  i  ]     =     new     List   <  int  >  ();      // L[0] is equal to arr[0]      L  [  0  ].  Add  (  arr  [  0  ]);      // start from index 1      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      // for every j less than i      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )     {      /*    * L[i] = {MaxSum(L[j])} + arr[i]    where j  < i and arr[j]  < arr[i]    */      if     ((  arr  [  i  ]     >     arr  [  j  ])      &&     (  findSum  (  L  [  i  ])      <     findSum  (  L  [  j  ])))     {      foreach  (  int     k     in      L  [  j  ])     if     (  !  L  [  i  ].  Contains  (  k  ))      L  [  i  ]      .  Add  (  k  );      }      }      // L[i] ends with arr[i]      L  [  i  ].  Add  (  arr  [  i  ]);      // L[i] now stores Maximum Sum Increasing      // Subsequence of arr[0..i] that ends with      // arr[i]      }      List   <  int  >     res     =     new     List   <  int  >  (  L  [  0  ]);      // res = L[0];      // find max      foreach  (  List   <  int  >     x     in     L  )     if     (  findSum  (  x  )      >     findSum  (  res  ))     res      =     x  ;      // max will contain result      foreach  (  int     i     in     res  )     Console  .  Write  (  i     +     ' '  );      Console  .  WriteLine  ();      }      // Driver Code      public     static     void     Main  (  String  []     args  )      {      int  []     arr     =     {     3       2       6       4       5       1     };      int     n     =     arr  .  Length  ;      // construct and print Max Sum IS of arr      printMaxSumIs  (  arr       n  );      }   }   // This code is contributed by PrinciRaj1992   
JavaScript
    <  script  >   /* Dynamic Programming solution to construct   Maximum Sum Increasing Subsequence */          // Utility function to calculate sum of all      // vector elements      function     findSum  (  arr  )      {      let     sum     =     0  ;      for     (  let     i  =  0  ;  i   <  arr  .  length  ;  i  ++  )      sum     +=     arr  [  i  ];      return     sum  ;      }          // Function to construct Maximum Sum Increasing      // Subsequence      function     printMaxSumIs  (  arr    n  )      {      // L[i] - The Maximum Sum Increasing      // Subsequence that ends with arr[i]          let     L     =     new     Array  (  n  );          for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      L  [  i  ]     =     [];          // L[0] is equal to arr[0]      L  [  0  ].  push  (  arr  [  0  ]);          // start from index 1      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     {          // for every j less than i      for     (  let     j     =     0  ;     j      <     i  ;     j  ++  )     {          /*    * L[i] = {MaxSum(L[j])} + arr[i]    where j  < i and arr[j]  < arr[i]    */      if     ((  arr  [  i  ]     >     arr  [  j  ])      &&     (  findSum  (  L  [  i  ])      <     findSum  (  L  [  j  ])))         {      for     (  let     k  =  0  ;  k   <  L  [  j  ].  length  ;  k  ++  )      if     (  !  L  [  i  ].  includes  (  L  [  j  ][  k  ]))      L  [  i  ].  push  (  L  [  j  ][  k  ]);      }      }          // L[i] ends with arr[i]      L  [  i  ].  push  (  arr  [  i  ]);          // L[i] now stores Maximum Sum Increasing      // Subsequence of arr[0..i] that ends with      // arr[i]      }          let     res     =     L  [  0  ];      // res = L[0];          // find max      for     (  let     x  =  0  ;  x   <  L  .  length  ;  x  ++  )      if     (  findSum  (  L  [  x  ])     >     findSum  (  res  ))      res     =     L  [  x  ];          // max will contain result      for     (  let     i  =  0  ;  i   <  res  .  length  ;  i  ++  )      document  .  write  (  res  [  i  ]     +     ' '  );      document  .  write  (  '  
'
); } // Driver Code let arr = [ 3 2 6 4 5 1 ]; let n = arr . length ; // construct and print Max Sum IS of arr printMaxSumIs ( arr n ); // This code is contributed by unknown2108 < /script>

Produktion
3 4 5 


 Vi kan optimera ovanstående DP-lösning genom att ta bort findSum()-funktionen. Istället kan vi upprätthålla en annan vektor/array för att lagra summan av den maximala summan ökande undersekvens som slutar med arr[i].

Tidskomplexitet av ovanstående dynamisk programmeringslösning är O(n 2 ). 
Hjälputrymme som används av programmet är O(n 2 ).

Tillvägagångssätt 2: ( Använder Dynamisk programmering med O(N)-mellanslag

Ovanstående tillvägagångssätt täckte hur man konstruerar en maximal summa ökande delsekvens i O(N 2 ) tid och O(N 2 ) utrymme. I detta tillvägagångssätt kommer vi att optimera rymdkomplexiteten och konstruera den maximala summan ökande delsekvensen i O(N 2 )  tid och O(N) utrymme.

  • Låt arr[0..n-1] vara inmatningsmatrisen.
  • Vi definierar en vektor av par L så att L[i] först lagrar den maximala summans ökande delsekvensen av arr[0..i] som slutar med arr[i] och L[i].second lagrar indexet för det föregående elementet som användes för att generera summan.
  • Eftersom det första elementet inte har något tidigare element så skulle dess index vara -1 i L[0].

Till exempel 

 array = [3 2 6 4 5 1]   

L[0]: {3 -1}
L[1]: {2 1}
L[2]: {9 0}
L[3]: {7 0}
L[4]: {12 3}
L[5]: {1 5}

Som vi kan se ovan är värdet på den maximala summans ökande delsekvensen 12. För att konstruera den faktiska delsekvensen kommer vi att använda indexet lagrat i L[i].second. Stegen för att konstruera undersekvensen visas nedan: 

  • I ett vektorresultat lagras värdet av elementet där den maximala summan ökande delsekvensen hittades (dvs. vid currIndex = 4). Så i resultatvektorn lägger vi till arr[currIndex].
  • Uppdatera currIndex till L[currIndex].second och upprepa steg 1 tills currIndex inte är -1 eller det inte ändras (dvs currIndex == previousIndex).
  • Visa elementen i resultatvektorn i omvänd ordning.

Nedan är implementeringen av ovanstående idé: 

C++14
   /* Dynamic Programming solution to construct   Maximum Sum Increasing Subsequence */   #include          using     namespace     std  ;   // Function to construct and print the Maximum Sum   // Increasing Subsequence   void     constructMaxSumIS  (  vector   <  int  >     arr       int     n  )   {      // L[i] stores the value of Maximum Sum Increasing      // Subsequence that ends with arr[i] and the index of      // previous element used to construct the Subsequence      vector   <  pair   <  int       int  >     >     L  (  n  );      int     index     =     0  ;      for     (  int     i     :     arr  )     {      L  [  index  ]     =     {     i       index     };      index  ++  ;      }      // Set L[0].second equal to -1      L  [  0  ].  second     =     -1  ;      // start from index 1      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      // for every j less than i      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )     {      if     (  arr  [  i  ]     >     arr  [  j  ]      and     L  [  i  ].  first      <     arr  [  i  ]     +     L  [  j  ].  first  )     {      L  [  i  ].  first     =     arr  [  i  ]     +     L  [  j  ].  first  ;      L  [  i  ].  second     =     j  ;      }      }      }      int     maxi     =     INT_MIN       currIndex       track     =     0  ;      for     (  auto     p     :     L  )     {      if     (  p  .  first     >     maxi  )     {      maxi     =     p  .  first  ;      currIndex     =     track  ;      }      track  ++  ;      }      // Stores the final Subsequence      vector   <  int  >     result  ;      // Index of previous element      // used to construct the Subsequence      int     prevoiusIndex  ;      while     (  currIndex     >=     0  )     {      result  .  push_back  (  arr  [  currIndex  ]);      prevoiusIndex     =     L  [  currIndex  ].  second  ;      if     (  currIndex     ==     prevoiusIndex  )      break  ;      currIndex     =     prevoiusIndex  ;      }      for     (  int     i     =     result  .  size  ()     -     1  ;     i     >=     0  ;     i  --  )      cout      < <     result  [  i  ]      < <     ' '  ;   }   // Driver Code   int     main  ()   {      vector   <  int  >     arr     =     {     1       101       2       3       100       4       5     };      int     n     =     arr  .  size  ();      // Function call      constructMaxSumIS  (  arr       n  );      return     0  ;   }   
Java
   // Dynamic Programming solution to construct   // Maximum Sum Increasing Subsequence    import     java.util.*  ;   import     java.awt.Point  ;   class   GFG  {       // Function to construct and print the Maximum Sum   // Increasing Subsequence   static     void     constructMaxSumIS  (  List   <  Integer  >     arr       int     n  )   {          // L.get(i) stores the value of Maximum Sum Increasing      // Subsequence that ends with arr.get(i) and the index of      // previous element used to construct the Subsequence      List   <  Point  >     L     =     new     ArrayList   <  Point  >  ();      int     index     =     0  ;      for  (  int     i     :     arr  )      {      L  .  add  (  new     Point  (  i       index  ));      index  ++  ;      }      // Set L[0].second equal to -1      L  .  set  (  0       new     Point  (  L  .  get  (  0  ).  x       -  1  ));      // Start from index 1      for  (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {          // For every j less than i      for  (  int     j     =     0  ;     j      <     i  ;     j  ++  )      {      if     (  arr  .  get  (  i  )     >     arr  .  get  (  j  )     &&      L  .  get  (  i  ).  x      <     arr  .  get  (  i  )     +      L  .  get  (  j  ).  x  )         {      L  .  set  (  i       new     Point  (  arr  .  get  (  i  )     +      L  .  get  (  j  ).  x       j  ));      }      }      }      int     maxi     =     -  100000000       currIndex     =     0       track     =     0  ;      for  (  Point     p     :     L  )         {      if     (  p  .  x     >     maxi  )      {      maxi     =     p  .  x  ;      currIndex     =     track  ;      }      track  ++  ;      }      // Stores the final Subsequence      List   <  Integer  >     result     =     new     ArrayList   <  Integer  >  ();      // Index of previous element      // used to construct the Subsequence      int     prevoiusIndex  ;      while     (  currIndex     >=     0  )         {      result  .  add  (  arr  .  get  (  currIndex  ));      prevoiusIndex     =     L  .  get  (  currIndex  ).  y  ;      if     (  currIndex     ==     prevoiusIndex  )      break  ;      currIndex     =     prevoiusIndex  ;      }      for  (  int     i     =     result  .  size  ()     -     1  ;     i     >=     0  ;     i  --  )      System  .  out  .  print  (  result  .  get  (  i  )     +     ' '  );   }      // Driver Code   public     static     void     main  (  String     []  s  )   {      List   <  Integer  >     arr     =     new     ArrayList   <  Integer  >  ();      arr  .  add  (  1  );      arr  .  add  (  101  );      arr  .  add  (  2  );      arr  .  add  (  3  );      arr  .  add  (  100  );      arr  .  add  (  4  );      arr  .  add  (  5  );          int     n     =     arr  .  size  ();      // Function call      constructMaxSumIS  (  arr       n  );      }   }   // This code is contributed by rutvik_56    
Python
   # Dynamic Programming solution to construct   # Maximum Sum Increasing Subsequence    import   sys   # Function to construct and print the Maximum Sum   # Increasing Subsequence   def   constructMaxSumIS  (  arr     n  )   :   # L[i] stores the value of Maximum Sum Increasing   # Subsequence that ends with arr[i] and the index of   # previous element used to construct the Subsequence   L   =   []   index   =   0   for   i   in   arr   :   L  .  append  ([  i     index  ])   index   +=   1   # Set L[0].second equal to -1   L  [  0  ][  1  ]   =   -  1   # start from index 1   for   i   in   range  (  1     n  )   :   # for every j less than i   for   j   in   range  (  i  )   :   if   (  arr  [  i  ]   >   arr  [  j  ]   and   L  [  i  ][  0  ]    <   arr  [  i  ]   +   L  [  j  ][  0  ])   :   L  [  i  ][  0  ]   =   arr  [  i  ]   +   L  [  j  ][  0  ]   L  [  i  ][  1  ]   =   j   maxi     currIndex     track   =   -  sys  .  maxsize     0     0   for   p   in   L   :   if   (  p  [  0  ]   >   maxi  )   :   maxi   =   p  [  0  ]   currIndex   =   track   track   +=   1   # Stores the final Subsequence   result   =   []   while   (  currIndex   >=   0  )   :   result  .  append  (  arr  [  currIndex  ])   prevoiusIndex   =   L  [  currIndex  ][  1  ]   if   (  currIndex   ==   prevoiusIndex  )   :   break   currIndex   =   prevoiusIndex   for   i   in   range  (  len  (  result  )   -   1     -  1     -  1  )   :   print  (  result  [  i  ]      end   =   ' '  )   arr   =   [   1     101     2     3     100     4     5   ]   n   =   len  (  arr  )   # Function call   constructMaxSumIS  (  arr     n  )   # This code is contributed by divyeshrabadiya07   
C#
   /* Dynamic Programming solution to construct   Maximum Sum Increasing Subsequence */   using     System  ;   using     System.Collections.Generic  ;      class     GFG      {          // Function to construct and print the Maximum Sum      // Increasing Subsequence      static     void     constructMaxSumIS  (  List   <  int  >     arr       int     n  )      {          // L[i] stores the value of Maximum Sum Increasing      // Subsequence that ends with arr[i] and the index of      // previous element used to construct the Subsequence      List   <  Tuple   <  int       int  >>     L     =     new     List   <  Tuple   <  int       int  >>  ();          int     index     =     0  ;      foreach  (  int     i     in     arr  )     {      L  .  Add  (  new     Tuple   <  int       int  >  (  i       index  ));      index  ++  ;      }          // Set L[0].second equal to -1      L  [  0  ]     =     new     Tuple   <  int       int  >  (  L  [  0  ].  Item1       -  1  );          // start from index 1      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {          // for every j less than i      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )      {      if     (  arr  [  i  ]     >     arr  [  j  ]     &&      L  [  i  ].  Item1      <     arr  [  i  ]     +      L  [  j  ].  Item1  )         {      L  [  i  ]     =     new     Tuple   <  int           int  >  (  arr  [  i  ]     +     L  [  j  ].  Item1       j  );      }      }      }          int     maxi     =     Int32  .  MinValue           currIndex     =     0       track     =     0  ;          foreach  (  Tuple   <  int       int  >     p     in     L  )         {      if     (  p  .  Item1     >     maxi  )      {      maxi     =     p  .  Item1  ;      currIndex     =     track  ;      }      track  ++  ;      }          // Stores the final Subsequence      List   <  int  >     result     =     new     List   <  int  >  ();          // Index of previous element      // used to construct the Subsequence      int     prevoiusIndex  ;          while     (  currIndex     >=     0  )         {      result  .  Add  (  arr  [  currIndex  ]);      prevoiusIndex     =     L  [  currIndex  ].  Item2  ;          if     (  currIndex     ==     prevoiusIndex  )      break  ;          currIndex     =     prevoiusIndex  ;      }          for     (  int     i     =     result  .  Count     -     1  ;     i     >=     0  ;     i  --  )      Console  .  Write  (  result  [  i  ]     +     ' '  );      }         static     void     Main  ()      {      List   <  int  >     arr     =     new     List   <  int  >  (  new         int  []     {     1       101       2       3       100       4       5     });      int     n     =     arr  .  Count  ;          // Function call      constructMaxSumIS  (  arr       n  );         }   }   // This code is contributed by divyesh072019   
JavaScript
    <  script  >   // Dynamic Programming solution to construct   // Maximum Sum Increasing Subsequence    // Function to construct and print the Maximum Sum   // Increasing Subsequence   function     constructMaxSumIS  (  arr       n  ){      // L[i] stores the value of Maximum Sum Increasing      // Subsequence that ends with arr[i] and the index of      // previous element used to construct the Subsequence      let     L     =     []      let     index     =     0      for  (  let     i     of     arr  ){      L  .  push  ([  i       index  ])      index     +=     1      }      // Set L[0].second equal to -1      L  [  0  ][  1  ]     =     -  1      // start from index 1      for  (  let     i  =  1  ;  i   <  n  ;  i  ++  ){          // for every j less than i      for  (  let     j  =  0  ;  j   <  i  ;  j  ++  ){      if     (  arr  [  i  ]     >     arr  [  j  ]     &&     L  [  i  ][  0  ]      <     arr  [  i  ]     +     L  [  j  ][  0  ]){      L  [  i  ][  0  ]     =     arr  [  i  ]     +     L  [  j  ][  0  ]      L  [  i  ][  1  ]     =     j      }      }      }      let     maxi     =     Number  .  MIN_VALUE       currIndex     =     0       track     =     0      for  (  let     p     of     L  ){      if     (  p  [  0  ]     >     maxi  ){      maxi     =     p  [  0  ]      currIndex     =     track      }          track     +=     1      }      // Stores the final Subsequence      let     result     =     []      while     (  currIndex     >=     0  ){      result  .  push  (  arr  [  currIndex  ])      let     prevoiusIndex     =     L  [  currIndex  ][  1  ]      if     (  currIndex     ==     prevoiusIndex  )      break      currIndex     =     prevoiusIndex      }      for  (  let     i  =  result  .  length     -     1  ;  i  >=  0  ;  i  --  )         document  .  write  (  result  [  i  ]       ' '  )   }   let     arr     =     [     1       101       2       3       100       4       5     ]   let     n     =     arr  .  length   // Function call   constructMaxSumIS  (  arr       n  )   // This code is contributed by shinjanpatra    <  /script>   

Produktion
1 2 3 100 

Tidskomplexitet: 2 )
Utrymmes komplexitet: PÅ)