Minsta intervall med element från k sorterade listor

Minsta intervall med element från k sorterade listor
Prova det på GFG -praxis

Med tanke på en 2D -heltal arr [] [] förordnad k * n där varje rad är sorterad i stigande ordning. Din uppgift är att hitta det minsta intervallet som innehåller minst ett element från var och en av  K  listor. Om mer än ett sådant intervall hittas returnera den första.

Exempel:  

Input: arr [] [] = [[4 7 9 12 15]
[0 8 10 14 20]
[6 12 16 30 50]]
Produktion: 6 8
Förklaring: Det minsta intervallet bildas av nummer 7 från den första listan 8 från andra listan och 6 från den tredje listan.

Input: arr [] [] = [[2 4]
[1 7]
[20 40]]
Produktion: 4 20
Förklaring: Området [4 20] innehåller 4 7 20 som innehåller element från alla de tre matriserna.

Innehållsbord

[Naivt tillvägagångssätt] - Använda K -pekare - O (N K^2) Tid och O (K) utrymme

Tanken är att hålla K -pekare en för varje lista som börjar på index 0. Vid varje steg ta min och max av de nuvarande K -elementen för att bilda ett intervall. Till minimera intervallet vi måste Öka minvärdet Eftersom vi inte kan minska max (alla pekare börjar vid 0). Så flytta pekaren på listan som har nuvarande minimum och uppdatera intervallet. Upprepa tills en lista är uttömd.

Steg för steg implementering:

  • Skapa en lista över pekare en för varje inmatningslista alla börjar vid index 0.
  • Upprepa processen Tills en av pekarna når slutet av sin lista.
  • Vid varje steg Välj de aktuella elementen Pekas av alla pekare.
  • Hitta minimum och maximalt bland dessa element.
  • Beräkna intervallet med hjälp av min- och maxvärdena.
  • Om detta intervall är mindre än den tidigare bästa uppdateringen svaret.
  • Gå framåt pekaren av listan som hade det minsta elementet.
  • Stopp när någon lista är utmattad och returnera det bästa utbudet som hittades.
C++
   // C++ program to find the smallest range   // that includes at least one element from   // each of the k sorted lists using k pointers   #include          #include         #include         using     namespace     std  ;   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {          int     k     =     arr  .  size  ();         int     n     =     arr  [  0  ].  size  ();         // Pointers for each of the k rows      vector   <  int  >     ptr  (  k       0  );      int     minRange     =     INT_MAX  ;      int     start     =     -1       end     =     -1  ;      while     (  true  )     {      int     minVal     =     INT_MAX  ;      int     maxVal     =     INT_MIN  ;      int     minRow     =     -1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      return     {  start       end  };      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]];      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]];      }      }      // Update the result range if a       // smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the       // row with minimum value      ptr  [  minRow  ]  ++  ;      }      return     {  start       end  };   }   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     res     =     findSmallestRange  (  arr  );      cout      < <     res  [  0  ]      < <     ' '      < <     res  [  1  ];      return     0  ;   }   
Java
   // Java program to find the smallest range   import     java.util.*  ;   class   GfG  {      static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;      int     n     =     arr  [  0  ]  .  length  ;      // Pointers for each of the k rows      int  []     ptr     =     new     int  [  k  ]  ;      int     minRange     =     Integer  .  MAX_VALUE  ;      int     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      int     minVal     =     Integer  .  MAX_VALUE  ;      int     maxVal     =     Integer  .  MIN_VALUE  ;      int     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      ArrayList   <  Integer  >     result     =     new     ArrayList   <>  ();      result  .  add  (  start  );      result  .  add  (  end  );      return     result  ;      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]]  ;      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]]  ;      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]++  ;      }      }      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     res     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  res  .  get  (  0  )     +     ' '     +     res  .  get  (  1  ));      }   }   
Python
   # Python program to find the smallest range   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   n   =   len  (  arr  [  0  ])   # Pointers for each of the k rows   ptr   =   [  0  ]   *   k   min_range   =   float  (  'inf'  )   start   =   -  1   end   =   -  1   while   True  :   min_val   =   float  (  'inf'  )   max_val   =   float  (  '-inf'  )   min_row   =   -  1   # Traverse all k rows to get current min and max   for   i   in   range  (  k  ):   # If any list is exhausted stop the loop   if   ptr  [  i  ]   ==   n  :   return   [  start     end  ]   # Track min value and its row index   if   arr  [  i  ][  ptr  [  i  ]]    <   min_val  :   min_val   =   arr  [  i  ][  ptr  [  i  ]]   min_row   =   i   # Track current max value   if   arr  [  i  ][  ptr  [  i  ]]   >   max_val  :   max_val   =   arr  [  i  ][  ptr  [  i  ]]   # Update the result range if a smaller range is found   if   max_val   -   min_val    <   min_range  :   min_range   =   max_val   -   min_val   start   =   min_val   end   =   max_val   # Move the pointer of the row with minimum value   ptr  [  min_row  ]   +=   1   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   res   =   findSmallestRange  (  arr  )   print  (  res  [  0  ]   res  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GfG  {      static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );      int     n     =     arr  .  GetLength  (  1  );      // Pointers for each of the k rows      int  []     ptr     =     new     int  [  k  ];         int     minRange     =     int  .  MaxValue  ;      int     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      int     minVal     =     int  .  MaxValue  ;      int     maxVal     =     int  .  MinValue  ;      int     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      return     new     List   <  int  >     {     start       end     };      }      int     current     =     arr  [  i       ptr  [  i  ]];      if     (  current      <     minVal  )     {      minVal     =     current  ;      minRow     =     i  ;      }      if     (  current     >     maxVal  )     {      maxVal     =     current  ;      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]  ++  ;      }      }      public     static     void     Main  (  string  []     args  )     {      int  []     arr     =     {      {     4       7       9       12       15     }      {     0       8       10       14       20     }      {     6       12       16       30       50     }      };      List   <  int  >     res     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  res  [  0  ]     +     ' '     +     res  [  1  ]);      }   }   
JavaScript
   // JavaScript program to find the smallest range   function     findSmallestRange  (  arr  )     {      let     k     =     arr  .  length  ;      let     n     =     arr  [  0  ].  length  ;      // Pointers for each of the k rows      let     ptr     =     new     Array  (  k  ).  fill  (  0  );      let     minRange     =     Infinity  ;      let     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      let     minVal     =     Infinity  ;      let     maxVal     =     -  Infinity  ;      let     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ===     n  )     {      return     [  start       end  ];      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]];      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]];      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]  ++  ;      }   }   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     res     =     findSmallestRange  (  arr  );   console  .  log  (  res  [  0  ]     +     ' '     +     res  [  1  ]);   

Produktion
6 8 

[Bättre tillvägagångssätt] med två pekare - o (n*k log (n*k)) tid och o (n*k) utrymme

Tanken är att hitta det minsta intervallproblemet genom att förvandla det till ett glidande fönsterproblem över en sammanslagen och sorterad lista över alla element från ingångslistorna. Varje element lagras tillsammans med sitt ursprungliga listindex för att spåra dess källa. Efter att ha sorterat den kombinerade listan med värde två pekare ( left och right ) används för att definiera ett fönster som rör sig genom listan. När fönstret expanderar spårar en frekvenskarta hur många unika listor som representeras. När fönstret innehåller minst ett nummer från varje lista försöker algoritmen att krympa det från vänster för att hitta ett mindre giltigt intervall. Det minsta sådana intervallet som hittades under denna process returneras som resultat.

C++
   #include          using     namespace     std  ;   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {          int     k     =     arr  .  size  ();         // Stores the current index for each list      vector   <  int  >     pointers  (  k       0  );      // Stores the current smallest range      vector   <  int  >     smallestRange     =     {  0       INT_MAX  };      while     (  true  )     {      int     currentMin     =     INT_MAX       currentMax     =     INT_MIN  ;      int     minListIndex     =     -1  ;      // Find the minimum and maximum among current elements of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i  ][  pointers  [  i  ]];      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  [  minListIndex  ].  size  ())     break  ;      }      return     smallestRange  ;   }   // Driver code   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     result     =     findSmallestRange  (  arr  );      cout      < <     result  [  0  ]      < <     ' '      < <     result  [  1  ];      return     0  ;   }   
Java
   import     java.util.*  ;   class   GfG     {      // Function to find the smallest range      public     static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;     // Number of lists      // Stores the current index for each list      int  []     pointers     =     new     int  [  k  ]  ;      // Stores the current smallest range      ArrayList   <  Integer  >     smallestRange     =     new     ArrayList   <>      (  Arrays  .  asList  (  0       Integer  .  MAX_VALUE  ));      // Continue the loop until one list is exhausted      while     (  true  )     {      int     currentMin     =     Integer  .  MAX_VALUE       currentMax     =     Integer  .  MIN_VALUE  ;      int     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i  ][  pointers  [  i  ]]  ;      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  .  get  (  1  )     -     smallestRange  .  get  (  0  ))     {      smallestRange  .  set  (  0       currentMin  );      smallestRange  .  set  (  1       currentMax  );      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  [  minListIndex  ]  .  length  )     break  ;      }      return     smallestRange  ;     // Return the result as ArrayList      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     result     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  result  .  get  (  0  )     +     ' '     +     result  .  get  (  1  ));      }   }   
Python
   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   # Number of lists   # Stores the current index for each list   pointers   =   [  0  ]   *   k   # Stores the current smallest range   smallestRange   =   [  0     float  (  'inf'  )]   # Continue the loop until one list is exhausted   while   True  :   currentMin   =   float  (  'inf'  )   currentMax   =   -  float  (  'inf'  )   minListIndex   =   -  1   # Find the minimum and maximum among current elements of all lists   for   i   in   range  (  k  ):   value   =   arr  [  i  ][  pointers  [  i  ]]   # Update the current minimum   if   value    <   currentMin  :   currentMin   =   value   minListIndex   =   i   # Update the current maximum   if   value   >   currentMax  :   currentMax   =   value   # Update the smallest range if this one is smaller   if   currentMax   -   currentMin    <   smallestRange  [  1  ]   -   smallestRange  [  0  ]:   smallestRange  [  0  ]   =   currentMin   smallestRange  [  1  ]   =   currentMax   # Move the pointer in the list that had the minimum value   pointers  [  minListIndex  ]   +=   1   # If that list is exhausted break the loop   if   pointers  [  minListIndex  ]   ==   len  (  arr  [  minListIndex  ]):   break   return   smallestRange   # Return the result as a list   # Driver code   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   result   =   findSmallestRange  (  arr  )   print  (  result  [  0  ]   result  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GfG  {      // Function to find the smallest range      public     static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );     // Number of lists (rows)      // Stores the current index for each list (row)      int  []     pointers     =     new     int  [  k  ];      // Stores the current smallest range      List   <  int  >     smallestRange     =     new     List   <  int  >     {     0       int  .  MaxValue     };      // Continue the loop until one list is exhausted      while     (  true  )     {      int     currentMin     =     int  .  MaxValue       currentMax     =     int  .  MinValue  ;      int     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements       // of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i       pointers  [  i  ]];      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  .  GetLength  (  1  ))     break  ;      }      return     smallestRange  ;     // Return the result as List        }      // Driver code      public     static     void     Main  (  string  []     args  )     {      int  []     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      List   <  int  >     result     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  result  [  0  ]     +     ' '     +     result  [  1  ]);      }   }   
JavaScript
   function     findSmallestRange  (  arr  )     {      const     k     =     arr  .  length  ;     // Number of lists      // Stores the current index for each list      let     pointers     =     new     Array  (  k  ).  fill  (  0  );      // Stores the current smallest range      let     smallestRange     =     [  0       Number  .  MAX_VALUE  ];      // Continue the loop until one list is exhausted      while     (  true  )     {      let     currentMin     =     Number  .  MAX_VALUE       currentMax     =     -  Number  .  MAX_VALUE  ;      let     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements of all lists      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      const     value     =     arr  [  i  ][  pointers  [  i  ]];      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ===     arr  [  minListIndex  ].  length  )     break  ;      }      return     smallestRange  ;     // Return the result as an array   }   // Driver code   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     result     =     findSmallestRange  (  arr  );   console  .  log  (  result  [  0  ]     result  [  1  ]);   

Produktion
6 8 

[Effektiv tillvägagångssätt] - Använda Min Heap - O (N K Log K) Tid och O (K) Space

Min-heap kan användas för att hitta minimivärdet i logaritmisk tid eller log k -tid istället för linjär tid. För att hitta maxvärdet initialiserar vi maxvärdet för alla 0 index initialt. För resten av maxvärdena i slingan jämför vi helt enkelt det aktuella maxvärdet med nästa objekt från listan från vilket minobjektet tas bort. Resten av tillvägagångssättet förblir densamma. 

Steg för steg implementering:

  • Min-heap kan användas för att hitta minimivärdet i logaritmisk tid eller log k -tid istället för linjär tid. För att hitta maxvärdet initialiserar vi maxvärdet för alla 0 index initialt. För resten av maxvärdena i slingan jämför vi helt enkelt det aktuella maxvärdet med nästa objekt från listan från vilket minobjektet tas bort. Resten av tillvägagångssättet förblir densamma. 

    Skapa en min-heap för att lagra K-element ett från varje matris och en variabel minska initialiseras till ett maximivärde och håll också en variabel max för att lagra det maximala heltalet.

  • Min-heap kan användas för att hitta minimivärdet i logaritmisk tid eller log k -tid istället för linjär tid. För att hitta maxvärdet initialiserar vi maxvärdet för alla 0 index initialt. För resten av maxvärdena i slingan jämför vi helt enkelt det aktuella maxvärdet med nästa objekt från listan från vilket minobjektet tas bort. Resten av tillvägagångssättet förblir densamma. 

    Placera initialt det första elementet från varje lista och lagra det maximala värdet i max .

  • Min-heap kan användas för att hitta minimivärdet i logaritmisk tid eller log k -tid istället för linjär tid. För att hitta maxvärdet initialiserar vi maxvärdet för alla 0 index initialt. För resten av maxvärdena i slingan jämför vi helt enkelt det aktuella maxvärdet med nästa objekt från listan från vilket minobjektet tas bort. Resten av tillvägagångssättet förblir densamma. 

    Upprepa följande steg tills minst en lista avgaser: 

    • Hitta minsta värdet eller min Använd toppen eller roten på minhögen som är det minsta elementet.
    • Uppdatera nu minska Om strömmen (max-min) är mindre än minska .
    • Ta bort topp- eller rotelementet från prioritetskön. Sätt i nästa element från listan som innehåller minelementet
    • Uppdatera max med det nya elementet infogat om det nya elementet är större än det föregående max.
Min-heap kan användas för att hitta minimivärdet i logaritmisk tid eller log k -tid istället för linjär tid. För att hitta maxvärdet initialiserar vi maxvärdet för alla 0 index initialt. För resten av maxvärdena i slingan jämför vi helt enkelt det aktuella maxvärdet med nästa objekt från listan från vilket minobjektet tas bort. Resten av tillvägagångssättet förblir densamma. 

C++

   #include          using     namespace     std  ;   // Struct to represent elements in the heap   struct     Node     {      int     val       row       col  ;      bool     operator  >  (  const     Node  &     other  )     const     {      return     val     >     other  .  val  ;      }   };   // Function to find the smallest range   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {      int     N     =     arr  .  size  ();     // Number of rows      int     K     =     arr  [  0  ].  size  ();     // Number of columns (same for each row)      priority_queue   <  Node       vector   <  Node  >       greater   <  Node  >>     pq  ;      int     maxVal     =     INT_MIN  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      pq  .  push  ({  arr  [  i  ][  0  ]     i       0  });      maxVal     =     max  (  maxVal       arr  [  i  ][  0  ]);      }      int     minRange     =     INT_MAX       minEl       maxEl  ;      while     (  true  )     {      Node     curr     =     pq  .  top  ();     pq  .  pop  ();      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     K  )     break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ];      pq  .  push  ({  nextVal       curr  .  row       curr  .  col     +     1  });      maxVal     =     max  (  maxVal       nextVal  );      }      return     {  minEl       maxEl  };   }   // Driver code   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     result     =     findSmallestRange  (  arr  );      cout      < <     result  [  0  ]      < <     ' '      < <     result  [  1  ];      return     0  ;   }   
Java
   import     java.util.*  ;   // Class to represent elements in the heap   class   Node     implements     Comparable   <  Node  >     {      int     val       row       col  ;      Node  (  int     val       int     row       int     col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }      // For min-heap based on value      public     int     compareTo  (  Node     other  )     {      return     this  .  val     -     other  .  val  ;      }   }   class   GfG     {      // Function to find the smallest range      static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;      int     n     =     arr  [  0  ]  .  length  ;      PriorityQueue   <  Node  >     pq     =     new     PriorityQueue   <>  ();      int     maxVal     =     Integer  .  MIN_VALUE  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      pq  .  add  (  new     Node  (  arr  [  i  ][  0  ]       i       0  ));      maxVal     =     Math  .  max  (  maxVal       arr  [  i  ][  0  ]  );      }      int     minRange     =     Integer  .  MAX_VALUE       minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      Node     curr     =     pq  .  poll  ();      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     n  )      break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ]  ;      pq  .  add  (  new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  ));      maxVal     =     Math  .  max  (  maxVal       nextVal  );      }      // Return result as ArrayList      ArrayList   <  Integer  >     result     =     new     ArrayList   <>  ();      result  .  add  (  minEl  );      result  .  add  (  maxEl  );      return     result  ;      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     res     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  res  .  get  (  0  )     +     ' '     +     res  .  get  (  1  ));      }   }   
Python
   import   heapq   # Function to find the smallest range   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   n   =   len  (  arr  [  0  ])   heap   =   []   maxVal   =   float  (  '-inf'  )   # Push the first element of each    # list into the min-heap   for   i   in   range  (  k  ):   heapq  .  heappush  (  heap     (  arr  [  i  ][  0  ]   i     0  ))   maxVal   =   max  (  maxVal     arr  [  i  ][  0  ])   minRange   =   float  (  'inf'  )   minEl   =   maxEl   =   -  1   while   True  :   minVal     row     col   =   heapq  .  heappop  (  heap  )   # Update range if better   if   maxVal   -   minVal    <   minRange  :   minRange   =   maxVal   -   minVal   minEl   =   minVal   maxEl   =   maxVal   # If we've reached the end of a list break   if   col   +   1   ==   n  :   break   # Push next element from the same list   nextVal   =   arr  [  row  ][  col   +   1  ]   heapq  .  heappush  (  heap     (  nextVal     row     col   +   1  ))   maxVal   =   max  (  maxVal     nextVal  )   return   [  minEl     maxEl  ]   # Driver code   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   res   =   findSmallestRange  (  arr  )   print  (  res  [  0  ]   res  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   // Class to represent elements in the heap   class     Node     :     IComparable   <  Node  >     {      public     int     val       row       col  ;      public     Node  (  int     val       int     row       int     col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }      // For min-heap based on value      public     int     CompareTo  (  Node     other  )     {      if     (  this  .  val     !=     other  .  val  )      return     this  .  val  .  CompareTo  (  other  .  val  );      // To avoid duplicate keys in SortedSet      if     (  this  .  row     !=     other  .  row  )      return     this  .  row  .  CompareTo  (  other  .  row  );      return     this  .  col  .  CompareTo  (  other  .  col  );      }   }   class     GfG     {      // Function to find the smallest range      static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );      int     n     =     arr  .  GetLength  (  1  );      var     pq     =     new     SortedSet   <  Node  >  ();      int     maxVal     =     int  .  MinValue  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      var     node     =     new     Node  (  arr  [  i       0  ]     i       0  );      pq  .  Add  (  node  );      maxVal     =     Math  .  Max  (  maxVal       arr  [  i       0  ]);      }      int     minRange     =     int  .  MaxValue       minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      var     curr     =     GetMin  (  pq  );      pq  .  Remove  (  curr  );      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     n  )      break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row       curr  .  col     +     1  ];      var     nextNode     =     new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  );      pq  .  Add  (  nextNode  );      maxVal     =     Math  .  Max  (  maxVal       nextVal  );      }      return     new     List   <  int  >     {     minEl       maxEl     };     // Return result as List        }      // Helper to get the minimum element (first element in SortedSet)      static     Node     GetMin  (  SortedSet   <  Node  >     pq  )     {      foreach     (  var     node     in     pq  )      return     node  ;      return     null  ;      }      // Driver code      static     void     Main  ()     {      int  []     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      List   <  int  >     res     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  res  [  0  ]     +     ' '     +     res  [  1  ]);      }   }   
JavaScript
   class     Node     {      constructor  (  val       row       col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }   }   // Function to find the smallest range   function     findSmallestRange  (  arr  )     {      const     k     =     arr  .  length  ;      const     n     =     arr  [  0  ].  length  ;      const     heap     =     new     MinHeap  ();      let     maxVal     =     -  Infinity  ;      // Push the first element of each list into the min-heap      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      heap  .  push  (  new     Node  (  arr  [  i  ][  0  ]     i       0  ));      maxVal     =     Math  .  max  (  maxVal       arr  [  i  ][  0  ]);      }      let     minRange     =     Infinity  ;      let     minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      const     curr     =     heap  .  pop  ();      const     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ===     n  )     break  ;      // Push next element from the same list      const     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ];      heap  .  push  (  new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  ));      maxVal     =     Math  .  max  (  maxVal       nextVal  );      }      return     [  minEl       maxEl  ];   }   // Min-heap comparator   class     MinHeap     {      constructor  ()     {      this  .  heap     =     [];      }      push  (  node  )     {      this  .  heap  .  push  (  node  );      this  .  _heapifyUp  ();      }      pop  ()     {      if     (  this  .  size  ()     ===     1  )     return     this  .  heap  .  pop  ();      const     top     =     this  .  heap  [  0  ];      this  .  heap  [  0  ]     =     this  .  heap  .  pop  ();      this  .  _heapifyDown  ();      return     top  ;      }      top  ()     {      return     this  .  heap  [  0  ];      }      size  ()     {      return     this  .  heap  .  length  ;      }      _heapifyUp  ()     {      let     idx     =     this  .  size  ()     -     1  ;      while     (  idx     >     0  )     {      let     parent     =     Math  .  floor  ((  idx     -     1  )     /     2  );      if     (  this  .  heap  [  parent  ].  val      <=     this  .  heap  [  idx  ].  val  )     break  ;      [  this  .  heap  [  parent  ]     this  .  heap  [  idx  ]]     =     [  this  .  heap  [  idx  ]     this  .  heap  [  parent  ]];      idx     =     parent  ;      }      }      _heapifyDown  ()     {      let     idx     =     0  ;      const     n     =     this  .  size  ();      while     (  true  )     {      let     left     =     2     *     idx     +     1  ;      let     right     =     2     *     idx     +     2  ;      let     smallest     =     idx  ;      if     (  left      <     n     &&     this  .  heap  [  left  ].  val      <     this  .  heap  [  smallest  ].  val  )     {      smallest     =     left  ;      }      if     (  right      <     n     &&     this  .  heap  [  right  ].  val      <     this  .  heap  [  smallest  ].  val  )     {      smallest     =     right  ;      }      if     (  smallest     ===     idx  )     break  ;      [  this  .  heap  [  smallest  ]     this  .  heap  [  idx  ]]     =     [  this  .  heap  [  idx  ]     this  .  heap  [  smallest  ]];      idx     =     smallest  ;      }      }   }   // Driver code   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     res     =     findSmallestRange  (  arr  );   console  .  log  (  res  [  0  ]     +     ' '     +     res  [  1  ]);   

Produktion
6 8