Minsta kostnadsväg med drag åt vänster, höger, botten och uppåt tillåtna

Minsta kostnadsväg med drag åt vänster, höger, botten och uppåt tillåtna
Prova det på GfG Practice

Givet ett 2D-rutnät av storlek n*n där varje cell representerar kostnaden för att gå igenom den cellen är uppgiften att hitta lägsta kostnad att flytta från uppe till vänster cell till längst ner till höger cell. Från en given cell kan vi flytta in 4 vägbeskrivningar : vänster höger upp och ner.

Notera: Det antas att negativa kostnadscykler inte finns i inmatningsmatrisen.

Exempel:

Input: rutnät = {{9 4 9 9}
{6 7 6 4}
{8 3 3 7}
{7 4 9 10}}
Utgång: 43
Förklaring: Minsta kostnadsväg är 9 + 4 + 7 + 3 + 3 + 7 + 10.

Närma sig:

Tanken är att använda Dijkstras algoritm för att hitta minimikostnadsvägen genom nätet. Detta tillvägagångssätt behandlar rutnätet som en graf där varje cell är en nod och algoritmen utforskar dynamiskt den mest kostnadseffektiva vägen till den nedre högra cellen genom att alltid expandera de lägsta kostnadsvägarna först.

Steg för steg tillvägagångssätt:

  1. Använd en min-hög för att alltid bearbeta den lägsta kostnadsvägen först och tryck in den övre vänstra cellen i den.
  2. Initiera en kostnadsmatris med maximala värden som ställer in startcellens kostnad till dess rutnätsvärde.
  3. Kontrollera alla 4 närliggande celler för varje cell
    1. Om en lägre kostnadsväg hittas uppdaterar du kostnaden för cellen och skjuter den till högen.
  4. Returnera minimikostnaden för att nå den nedre högra cellen.

Nedan är implementeringen av ovanstående tillvägagångssätt:

C++
   // C++ program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   #include          using     namespace     std  ;   // Function to check if cell is valid.   bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i  >=  0     &&     i   <  n     &&     j  >=  0     &&     j   <  n  ;   }   int     minimumCostPath  (  vector   <  vector   <  int  >>     &  grid  )     {      int     n     =     grid  .  size  ();          // Min heap to implement dijkstra      priority_queue   <  vector   <  int  >           vector   <  vector   <  int  >>       greater   <  vector   <  int  >>>     pq  ;          // 2d grid to store minimum cost      // to reach every cell.      vector   <  vector   <  int  >>     cost  (  n       vector   <  int  >  (  n       INT_MAX  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      vector   <  vector   <  int  >>     dir     =     {{  -1    0  }     {  1    0  }     {  0    -1  }     {  0    1  }};          pq  .  push  ({  grid  [  0  ][  0  ]     0       0  });          while     (  !  pq  .  empty  ())     {      vector   <  int  >     top     =     pq  .  top  ();      pq  .  pop  ();          int     c     =     top  [  0  ]     i     =     top  [  1  ]     j     =     top  [  2  ];          // Check for all 4 neighbouring cells.      for     (  auto     d  :     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ]   <  cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  push  ({  cost  [  x  ][  y  ]     x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n  -1  ][  n  -1  ];   }   int     main  ()     {      vector   <  vector   <  int  >>     grid     =         {{  9    4    9    9  }{  6    7    6    4  }{  8    3    3    7  }{  7    4    9    10  }};          cout      < <     minimumCostPath  (  grid  )      < <     endl  ;          return     0  ;   }   
Java
   // Java program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   import     java.util.PriorityQueue  ;   import     java.util.Arrays  ;   class   GfG     {      // Function to check if cell is valid.      static     boolean     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  length  ;          // Min heap to implement Dijkstra      PriorityQueue   <  int  []>     pq     =         new     PriorityQueue   <>  ((  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][  n  ]  ;      for     (  int  []     row     :     cost  )     {      Arrays  .  fill  (  row       Integer  .  MAX_VALUE  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ]  ;          // Direction vector to move in 4 directions      int  [][]     dir     =     {{  -  1       0  }     {  1       0  }     {  0       -  1  }     {  0       1  }};          pq  .  offer  (  new     int  []  {  grid  [  0  ][  0  ]       0       0  });          while     (  !  pq  .  isEmpty  ())     {      int  []     top     =     pq  .  poll  ();          int     c     =     top  [  0  ]       i     =     top  [  1  ]       j     =     top  [  2  ]  ;          // Check for all 4 neighbouring cells.      for     (  int  []     d     :     dir  )     {      int     x     =     i     +     d  [  0  ]  ;      int     y     =     j     +     d  [  1  ]  ;          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ]  )     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]  ;          // Push the cell into heap.      pq  .  offer  (  new     int  []  {  cost  [  x  ][  y  ]       x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     grid     =     {      {  9       4       9       9  }      {  6       7       6       4  }      {  8       3       3       7  }      {  7       4       9       10  }      };          System  .  out  .  println  (  minimumCostPath  (  grid  ));      }   }   
Python
   # Python program to find minimum Cost Path with    # Left Right Bottom and Up moves allowed   import   heapq   # Function to check if cell is valid.   def   isValidCell  (  i     j     n  ):   return   i   >=   0   and   i    <   n   and   j   >=   0   and   j    <   n   def   minimumCostPath  (  grid  ):   n   =   len  (  grid  )   # Min heap to implement Dijkstra   pq   =   []   # 2D grid to store minimum cost   # to reach every cell.   cost   =   [[  float  (  'inf'  )]   *   n   for   _   in   range  (  n  )]   cost  [  0  ][  0  ]   =   grid  [  0  ][  0  ]   # Direction vector to move in 4 directions   dir   =   [[  -  1     0  ]   [  1     0  ]   [  0     -  1  ]   [  0     1  ]]   heapq  .  heappush  (  pq     [  grid  [  0  ][  0  ]   0     0  ])   while   pq  :   c     i     j   =   heapq  .  heappop  (  pq  )   # Check for all 4 neighbouring cells.   for   d   in   dir  :   x     y   =   i   +   d  [  0  ]   j   +   d  [  1  ]   # If cell is valid and cost to reach this cell    # from current cell is less   if   isValidCell  (  x     y     n  )   and   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]    <   cost  [  x  ][  y  ]:   # Update cost to reach this cell.   cost  [  x  ][  y  ]   =   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]   # Push the cell into heap.   heapq  .  heappush  (  pq     [  cost  [  x  ][  y  ]   x     y  ])   # Return minimum cost to    # reach bottom right cell.   return   cost  [  n   -   1  ][  n   -   1  ]   if   __name__   ==   '__main__'  :   grid   =   [   [  9     4     9     9  ]   [  6     7     6     4  ]   [  8     3     3     7  ]   [  7     4     9     10  ]   ]   print  (  minimumCostPath  (  grid  ))   
C#
   // C# program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Function to check if cell is valid.      static     bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  Length  ;          // Min heap to implement Dijkstra      var     pq     =     new     SortedSet   <  (  int     cost       int     x       int     y  )  >  ();          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      cost  [  i  ]     =     new     int  [  n  ];      Array  .  Fill  (  cost  [  i  ]     int  .  MaxValue  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      int  [][]     dir     =     {     new     int  []     {  -  1       0  }     new     int  []     {  1       0  }         new     int  []     {  0       -  1  }     new     int  []     {  0       1  }     };          pq  .  Add  ((  grid  [  0  ][  0  ]     0       0  ));          while     (  pq  .  Count     >     0  )     {      var     top     =     pq  .  Min  ;      pq  .  Remove  (  top  );          int     i     =     top  .  x       j     =     top  .  y  ;          // Check for all 4 neighbouring cells.      foreach     (  var     d     in     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  Add  ((  cost  [  x  ][  y  ]     x       y  ));      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];      }      static     void     Main  (  string  []     args  )     {      int  [][]     grid     =     new     int  [][]     {      new     int  []     {  9       4       9       9  }      new     int  []     {  6       7       6       4  }      new     int  []     {  8       3       3       7  }      new     int  []     {  7       4       9       10  }      };          Console  .  WriteLine  (  minimumCostPath  (  grid  ));      }   }   
JavaScript
   // JavaScript program to find minimum Cost Path with   // Left Right Bottom and Up moves allowed   function     comparator  (  a       b  )     {      if     (  a  [  0  ]     >     b  [  0  ])     return     -  1  ;      if     (  a  [  0  ]      <     b  [  0  ])     return     1  ;      return     0  ;   }   class     PriorityQueue     {      constructor  (  compare  )     {      this  .  heap     =     [];      this  .  compare     =     compare  ;      }      enqueue  (  value  )     {      this  .  heap  .  push  (  value  );      this  .  bubbleUp  ();      }      bubbleUp  ()     {      let     index     =     this  .  heap  .  length     -     1  ;      while     (  index     >     0  )     {      let     element     =     this  .  heap  [  index  ]      parentIndex     =     Math  .  floor  ((  index     -     1  )     /     2  )      parent     =     this  .  heap  [  parentIndex  ];      if     (  this  .  compare  (  element       parent  )      <     0  )     break  ;      this  .  heap  [  index  ]     =     parent  ;      this  .  heap  [  parentIndex  ]     =     element  ;      index     =     parentIndex  ;      }      }      dequeue  ()     {      let     max     =     this  .  heap  [  0  ];      let     end     =     this  .  heap  .  pop  ();      if     (  this  .  heap  .  length     >     0  )     {      this  .  heap  [  0  ]     =     end  ;      this  .  sinkDown  (  0  );      }      return     max  ;      }      sinkDown  (  index  )     {      let     left     =     2     *     index     +     1        right     =     2     *     index     +     2        largest     =     index  ;      if     (      left      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  left  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     left  ;      }      if     (      right      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  right  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     right  ;      }      if     (  largest     !==     index  )     {      [  this  .  heap  [  largest  ]     this  .  heap  [  index  ]]     =     [      this  .  heap  [  index  ]      this  .  heap  [  largest  ]      ];      this  .  sinkDown  (  largest  );      }      }      isEmpty  ()     {      return     this  .  heap  .  length     ===     0  ;      }   }   // Function to check if cell is valid.   function     isValidCell  (  i       j       n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;   }   function     minimumCostPath  (  grid  )     {      let     n     =     grid  .  length  ;      // Min heap to implement Dijkstra      const     pq     =     new     PriorityQueue  (  comparator  )      // 2D grid to store minimum cost      // to reach every cell.      let     cost     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  Infinity  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];      // Direction vector to move in 4 directions      let     dir     =     [[  -  1       0  ]     [  1       0  ]     [  0       -  1  ]     [  0       1  ]];      pq  .  enqueue  ([  grid  [  0  ][  0  ]     0       0  ]);      while     (  !  pq  .  isEmpty  ())     {      let     [  c       i       j  ]     =     pq  .  dequeue  ();      // Check for all 4 neighbouring cells.      for     (  let     d     of     dir  )     {      let     x     =     i     +     d  [  0  ];      let     y     =     j     +     d  [  1  ];      // If cell is valid and cost to reach this cell      // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {      // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];      // Push the cell into heap.      pq  .  enqueue  ([  cost  [  x  ][  y  ]     x       y  ]);      }      }      }      // Return minimum cost to      // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];   }   let     grid     =     [      [  9       4       9       9  ]      [  6       7       6       4  ]      [  8       3       3       7  ]      [  7       4       9       10  ]      ];   console  .  log  (  minimumCostPath  (  grid  ));   

Produktion
43  

Tidskomplexitet: O(n^2 log(n^2))
Hjälputrymme: O(n^2 log(n^2))

Varför kan dynamisk programmering inte användas?

Dynamisk programmering misslyckas här eftersom att tillåta rörelse i alla fyra riktningarna skapar cykler där celler kan återbesökas och bryter det optimala antagandet om understruktur. Detta innebär att kostnaden för att nå en cell från en given cell inte är fast utan beror på hela vägen.

Relaterade artiklar:

Min kostnadsväg

Skapa frågesport