Position d'un élément après un tri stable

Position d'un élément après un tri stable
Essayez-le sur GfG Practice #practiceLinkDiv { display : aucun !important; }

Étant donné un tableau d'entiers pouvant contenir des éléments en double, un élément de ce tableau nous est donné, nous devons indiquer la position finale de cet élément dans le tableau si un algorithme de tri stable est appliqué.

Exemples :  

Input : arr[] = [3 4 3 5 2 3 4 3 1 5] index = 5 Output : 4 Element initial index – 5 (third 3) After sorting array by stable sorting algorithm we get array as shown below [1(8) 2(4) 3(0) 3(2) 3(5) 3(7) 4(1) 4(6) 5(3) 5(9)] with their initial indices shown in parentheses next to them Element's index after sorting = 4 
Recommended Practice Tri et position stables Essayez-le !

Un moyen simple de résoudre ce problème consiste à utiliser n’importe quel algorithme de tri stable comme Tri par insertion Le tri va etc, puis obtenez le nouvel index de l'élément donné mais nous pouvons résoudre ce problème sans trier le tableau. 



Comme la position d'un élément dans un tableau trié est décidée uniquement par les éléments qui sont plus petits que l'élément donné. Nous comptons tous les éléments du tableau plus petits qu'un élément donné et pour les éléments qui sont égaux aux éléments d'élément donné se produisant avant que l'index des éléments donnés ne soit inclus dans le nombre d'éléments plus petits, cela garantira la stabilité de l'index du résultat. 

Le code simple pour mettre en œuvre l’approche ci-dessus est implémenté ci-dessous : 

C++
   // C++ program to get index of array element in    // sorted array    #include             using     namespace     std  ;      // Method returns the position of arr[idx] after    // performing stable-sort on array    int     getIndexInSortedArray  (  int     arr  []     int     n       int     idx  )      {         /* Count of elements smaller than current     element plus the equal element occurring     before given index*/      int     result     =     0  ;         for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {         // If element is smaller then increase       // the smaller count       if     (  arr  [  i  ]      <     arr  [  idx  ])         result  ++  ;         // If element is equal then increase count       // only if it occurs before       if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )         result  ++  ;         }         return     result  ;      }      // Driver code to test above methods    int     main  ()      {         int     arr  []     =     {     3       4       3       5       2       3       4       3       1       5     };         int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);         int     idxOfEle     =     5  ;         cout      < <     getIndexInSortedArray  (  arr       n       idxOfEle  );         return     0  ;      }      
Java
   // Java program to get index of array   // element in sorted array   class   ArrayIndex     {      // Method returns the position of      // arr[idx] after performing stable-sort      // on array      static     int     getIndexInSortedArray  (  int     arr  []        int     n       int     idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      int     result     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ]  )      result  ++  ;      // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     3       4       3       5       2       3       4       3       1       5     };      int     n     =     arr  .  length  ;      int     idxOfEle     =     5  ;      System  .  out  .  println  (  getIndexInSortedArray  (  arr        n       idxOfEle  ));      }   }   // This code is contributed by Raghav sharma   
Python3
   # Python program to get index of array element in   # sorted array   # Method returns the position of arr[idx] after   # performing stable-sort on array   def   getIndexInSortedArray  (  arr     n     idx  ):   # Count of elements smaller than current   # element plus the equal element occurring   # before given index   result   =   0   for   i   in   range  (  n  ):   # If element is smaller then increase   # the smaller count   if   (  arr  [  i  ]    <   arr  [  idx  ]):   result   +=   1   # If element is equal then increase count   # only if it occurs before   if   (  arr  [  i  ]   ==   arr  [  idx  ]   and   i    <   idx  ):   result   +=   1   return   result  ;   # Driver code to test above methods   arr   =   [  3     4     3     5     2     3     4     3     1     5  ]   n   =   len  (  arr  )   idxOfEle   =   5   print   (  getIndexInSortedArray  (  arr     n     idxOfEle  ))   # Contributed by: Afzal Ansari   
C#
   // C# program to get index of array   // element in sorted array   using     System  ;   class     ArrayIndex     {          // Method returns the position of      // arr[idx] after performing stable-sort      // on array      static     int     getIndexInSortedArray  (  int  []     arr        int     n       int     idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      int     result     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ])      result  ++  ;      // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     3       4       3       5       2       3       4       3       1       5     };      int     n     =     arr  .  Length  ;      int     idxOfEle     =     5  ;      Console  .  WriteLine  (  getIndexInSortedArray  (  arr       n           idxOfEle  ));      }   }   // This code is contributed by vt_m   
PHP
      // PHP program to get index of   // array element in sorted array   // Method returns the position of    // arr[idx] after performing    // stable-sort on array   function   getIndexInSortedArray  (   $arr     $n     $idx  )   {   /* Count of elements smaller    than current element plus     the equal element occurring    before given index */   $result   =   0  ;   for  (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // If element is smaller then   // increase the smaller count   if   (  $arr  [  $i  ]    <   $arr  [  $idx  ])   $result  ++  ;   // If element is equal then   // increase count only if    // it occurs before   if   (  $arr  [  $i  ]   ==   $arr  [  $idx  ]   and   $i    <   $idx  )   $result  ++  ;   }   return   $result  ;   }   // Driver Code   $arr   =   array  (  3     4     3     5     2     3     4     3     1     5  );   $n   =  count  (  $arr  );   $idxOfEle   =   5  ;   echo   getIndexInSortedArray  (  $arr     $n     $idxOfEle  );   // This code is contributed by anuj_67.   ?>   
JavaScript
    <  script  >   // JavaScript program to get index of array   // element in sorted array      // Method returns the position of      // arr[idx] after performing stable-sort      // on array      function     getIndexInSortedArray  (  arr        n       idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      let     result     =     0  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ])      result  ++  ;          // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }   // Driver Code      let     arr     =     [     3       4       3       5       2       3       4       3       1       5     ];      let     n     =     arr  .  length  ;          let     idxOfEle     =     5  ;      document  .  write  (  getIndexInSortedArray  (  arr        n       idxOfEle  ));       // This code is contributed by code_hunt.     <  /script>   

Sortir
4 

Complexité temporelle : Sur) où n est la taille du tableau.
Espace auxiliaire : O(1)

 

Créer un quiz

Top Articles

Catégorie

Des Articles Intéressants