Sannsynlighet for at Knight forblir på sjakkbrettet

Sannsynlighet for at Knight forblir på sjakkbrettet
Prøv det på GfG Practice

Gitt en n*n sjakkbrett og den ridder posisjon (x y) hver gang ridderen skal flytte, velger den ett av åtte mulige trekk jevnt kl tilfeldig (selv om brikken ville gå av sjakkbrettet) og beveger seg der. Ridderen fortsetter beveger seg til den har gjort nøyaktig k beveger seg eller har flyttet av sjakkbrettet. Oppgaven er å finne de sannsynlighet at ridderen rester borde etter at den har stoppet flytte.

Note: En sjakkridder kan gjøre åtte mulige trekk. Hvert trekk er to celler i kardinalretning og deretter en celle i ortogonal retning.

Eksempler:  

Inndata: n = 8 x = 0 y = 0 k = 1
Produksjon: 0,25
Forklaring: Ridderen starter på (0 0) og etter å ha tatt ett steg vil den ligge inne på brettet i bare 2 av 8 posisjoner som er (1 2) og (2 1). Dermed blir sannsynligheten 2/8 = 0,25.

Inndata: n = 8 x = 0 y = 0 k = 3
Produksjon: 0,125

Inndata: n = 4 x = 1 y = 2 k = 4
Produksjon: 0,024414

Innholdsfortegnelse

Bruke Top-Down Dp (Memoisering) - O(n*n*k) Tid og O(n*n*k) Space

Sannsynligheten for at ridder forblir på sjakkbrettet etter k trekk er lik gjennomsnittet av sannsynligheten for ridder ved tidligere åtte posisjoner etter k - 1 trekk. På samme måte avhenger sannsynligheten etter k-1 trekk av gjennomsnittet av sannsynligheten etter k-2 trekk. Tanken er å bruke memoisering for å lagre sannsynlighetene for tidligere trekk og finne gjennomsnittet for å beregne det endelige resultatet.
For å gjøre det oppretter du en 3d array memo[][][] hvor memo[i][j][k] lagrer sannsynligheten for at ridder er i celle (i j) etter k trekk. Hvis k er null, dvs. starttilstanden er nådd retur 1 ellers utforske de åtte tidligere posisjonene og finn gjennomsnittet av sannsynlighetene deres.

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // recursive function to calculate   // knight probability   double     knightProbability  (  int     n       int     x       int     y       int     k           vector   <  vector   <  vector   <  double  >>>     &  memo  ){      // Base case initial probability      if  (  k     ==     0  )     return     1.0  ;      // check if already calculated      if  (  memo  [  x  ][  y  ][  k  ]     !=     -1  )     return     memo  [  x  ][  y  ][  k  ];      vector   <  vector   <  int  >>     directions     =     {{  1       2  }     {  2       1  }     {  2       -1  }      {  1       -2  }     {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }};      memo  [  x  ][  y  ][  k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (xy)      for  (  auto     d  :  directions  ){      int     u     =     x     +     d  [  0  ];      int     v     =     y     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     knightProbability  (  n       u       v       k  -1       memo  )     /     8.0  ;      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;   }   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      vector   <  vector   <  vector   <  double  >>>     memo  (  n           vector   <  vector   <  double  >>  (  n        vector   <  double  >     (  k  +  1       -1  )));      return     knightProbability  (  n       x       y       k       memo  );   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   class   GfG     {      // recursive function to calculate      // knight probability      static     double     knightProbability  (  int     n       int     x           int     y       int     k       double  [][][]     memo  )     {      // Base case initial probability      if     (  k     ==     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x  ][  y  ][  k  ]     !=     -  1  )     return     memo  [  x  ][  y  ][  k  ]  ;      int  [][]     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      memo  [  x  ][  y  ][  k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int  []     d     :     directions  )     {      int     u     =     x     +     d  [  0  ]  ;      int     v     =     y     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     knightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;      }      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      double  [][][]     memo     =     new     double  [  n  ][  n  ][  k     +     1  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      for     (  int     m     =     0  ;     m      <=     k  ;     m  ++  )     {      memo  [  i  ][  j  ][  m  ]     =     -  1  ;      }      }      }      return     knightProbability  (  n       x       y       k       memo  );      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   # recursive function to calculate   # knight probability   def   knightProbability  (  n     x     y     k     memo  ):   # Base case initial probability   if   k   ==   0  :   return   1.0   # check if already calculated   if   memo  [  x  ][  y  ][  k  ]   !=   -  1  :   return   memo  [  x  ][  y  ][  k  ]   directions   =   [   [  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]   ]   memo  [  x  ][  y  ][  k  ]   =   0   cur   =   0.0   # for every position reachable from (x y)   for   d   in   directions  :   u   =   x   +   d  [  0  ]   v   =   y   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   knightProbability  (  n     u     v     k   -   1     memo  )   /   8.0   memo  [  x  ][  y  ][  k  ]   =   cur   return   cur   # Function to find the probability   def   findProb  (  n     x     y     k  ):   # Initialize memo to store results   memo   =   [[[  -  1   for   _   in   range  (  k   +   1  )]   for   _   in   range  (  n  )]   for   _   in   range  (  n  )]   return   knightProbability  (  n     x     y     k     memo  )   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // recursive function to calculate      // knight probability      static     double     KnightProbability  (  int     n       int     x           int     y       int     k       double  []     memo  )     {      // Base case initial probability      if     (  k     ==     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x       y       k  ]     !=     -  1  )     return     memo  [  x       y       k  ];      int  []     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      memo  [  x       y       k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int     i     =     0  ;     i      <     8  ;     i  ++  )     {      int     u     =     x     +     directions  [  i       0  ];      int     v     =     y     +     directions  [  i       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     KnightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      }      return     memo  [  x       y       k  ]     =     cur  ;      }      // Function to find the probability      static     double     FindProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      double  []     memo     =     new     double  [  n       n       k     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      for     (  int     m     =     0  ;     m      <=     k  ;     m  ++  )     {      memo  [  i       j       m  ]     =     -  1  ;      }      }      }      return     KnightProbability  (  n       x       y       k       memo  );      }      static     void     Main  ()     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  FindProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   // recursive function to calculate   // knight probability   function     knightProbability  (  n       x       y       k       memo  )     {      // Base case initial probability      if     (  k     ===     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x  ][  y  ][  k  ]     !==     -  1  )     return     memo  [  x  ][  y  ][  k  ];      const     directions     =     [      [  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]      [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]      ];      memo  [  x  ][  y  ][  k  ]     =     0  ;      let     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  let     d     of     directions  )     {      const     u     =     x     +     d  [  0  ];      const     v     =     y     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     knightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;   }   // Function to find the probability   function     findProb  (  n       x       y       k  )     {      // Initialize memo to store results      const     memo     =     Array  .  from  ({     length  :     n     }     ()     =>      Array  .  from  ({     length  :     n     }     ()     =>     Array  (  k     +     1  ).  fill  (  -  1  )));      return     knightProbability  (  n       x       y       k       memo  ).  toFixed  (  6  );   }   const     n     =     8       x     =     0       y     =     0       k     =     3  ;      console  .  log  (  findProb  (  n       x       y       k  ));   

Produksjon
0.125  

Bruke Bottom-Up Dp (Tabulering) - O(n*n*k) Tid og O(n*n*k) Space

Tilnærmingen ovenfor kan optimaliseres ved hjelp av nedenfra og opp tabulering som reduserer den ekstra plassen som kreves for rekursiv stabel. Tanken er å opprettholde en 3 D array dp[][][] hvor dp[i][j][k] lagrer sannsynligheten for at ridder er på cellen (i j) etter k beveger seg. Initialiser 0 tilstand av dp med verdi 1 . For hvert påfølgende trekk sannsynlighet av ridder vil være lik til gjennomsnittlig av sannsynlighet for tidligere 8 stillinger etter k-1 beveger seg.

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      vector   <  vector   <  vector   <  double  >>>     dp  (  n           vector   <  vector   <  double  >>  (  n        vector   <  double  >     (  k  +  1  )));          // Initialize dp for step 0      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      dp  [  i  ][  j  ][  0  ]     =     1.0  ;      }      }      vector   <  vector   <  int  >>     directions     =     {      {  1       2  }     {  2       1  }     {  2       -1  }     {  1       -2  }         {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  auto     d  :  directions  )     {      int     u     =     i     +     d  [  0  ];      int     v     =     j     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ];   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   import     java.util.*  ;   class   GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      double  [][][]     dp     =     new     double  [  n  ][  n  ][  k     +     1  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      dp  [  i  ][  j  ][  0  ]     =     1  ;      }      }      int  [][]     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }         {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int  []     d     :     directions  )     {      int     u     =     i     +     d  [  0  ]  ;      int     v     =     j     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   # Function to find the probability   def   findProb  (  n     x     y     k  ):   # Initialize dp to store results of each step   dp   =   [[[  0   for   _   in   range  (  k   +   1  )]   for   _   in   range  (  n  )]   for   _   in   range  (  n  )]   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   dp  [  i  ][  j  ][  0  ]   =   1.0   directions   =   [[  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]]   for   move   in   range  (  1     k   +   1  ):   # find probability for cell (i j)   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   cur   =   0.0   # for every position reachable from (x y)   for   d   in   directions  :   u   =   i   +   d  [  0  ]   v   =   j   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   dp  [  u  ][  v  ][  move   -   1  ]   /   8.0   # store the result   dp  [  i  ][  j  ][  move  ]   =   cur   # return the result   return   dp  [  x  ][  y  ][  k  ]   if   __name__   ==   '__main__'  :   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      double  []     dp     =     new     double  [  n       n       k     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      dp  [  i       j       0  ]     =     1.0  ;      }      }      int  []     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }         {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int     d     =     0  ;     d      <     directions  .  GetLength  (  0  );     d  ++  )     {      int     u     =     i     +     directions  [  d       0  ];      int     v     =     j     +     directions  [  d       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u       v       move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i       j       move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x       y       k  ];      }      static     void     Main  (  string  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  findProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   // Function to find the probability   function     findProb  (  n       x       y       k  )     {      // Initialize dp to store results of each step      let     dp     =     Array  .  from  ({     length  :     n     }     ()     =>         Array  .  from  ({     length  :     n     }     ()     =>     Array  (  k     +     1  ).  fill  (  0  ))      );      // Initialize dp for step 0      for     (  let     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  let     j     =     0  ;     j      <     n  ;     ++  j  )     {      dp  [  i  ][  j  ][  0  ]     =     1.0  ;      }      }          let     directions     =     [[  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]         [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]];      for     (  let     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      let     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  let     d     of     directions  )     {      let     u     =     i     +     d  [  0  ];      let     v     =     j     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ].  toFixed  (  6  );   }   let     n     =     8       x     =     0       y     =     0       k     =     3  ;   console  .  log  (  findProb  (  n       x       y       k  ));   

Produksjon
0.125  

Bruke romoptimalisert Dp - O(n*n*k) Tid og O(n*n) Mellomrom

Tilnærmingen ovenfor krever bare tidligere sannsynlighetstilstand for å beregne nåværende oppgi slik bare de tidligere butikken må lagres. Tanken er å lage to 2d-matriser prevMove[][] og currMove[][] hvor

  • prevMove[i][j] lagrer sannsynligheten for at ridder er på (i j) opp til forrige trekk. Den initialiseres med verdi 1 for starttilstand.
  • currMove[i][j] lagrer sannsynligheten for gjeldende tilstand.

Betjen på samme måte som tilnærmingen ovenfor og kl slutt av hver iterasjon update prevMove[][] med verdi lagret i currMove[][].

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      vector   <  vector   <  double  >>     prevMove  (  n       vector   <  double  >  (  n       1  ));      // dp to store results of current move      vector   <  vector   <  double  >>     currMove  (  n       vector   <  double  >  (  n       0  ));      vector   <  vector   <  int  >>     directions     =     {      {  1       2  }     {  2       1  }     {  2       -1  }     {  1       -2  }         {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  auto     d  :  directions  )     {      int     u     =     i     +     d  [  0  ];      int     v     =     j     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      prevMove     =     currMove  ;      }      // return the result      return     prevMove  [  x  ][  y  ];   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   class   GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      double  [][]     prevMove     =     new     double  [  n  ][  n  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      prevMove  [  i  ][  j  ]     =     1.0  ;      }      }      // dp to store results of current move      double  [][]     currMove     =     new     double  [  n  ][  n  ]  ;      int  [][]     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  int  []     d     :     directions  )     {      int     u     =     i     +     d  [  0  ]  ;      int     v     =     j     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      System  .  arraycopy  (  currMove  [  i  ]       0       prevMove  [  i  ]       0       n  );      }      }      // return the result      return     prevMove  [  x  ][  y  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   def   findProb  (  n     x     y     k  ):   # dp to store results of previous move   prevMove   =   [[  1.0  ]   *   n   for   _   in   range  (  n  )]   # dp to store results of current move   currMove   =   [[  0.0  ]   *   n   for   _   in   range  (  n  )]   directions   =   [   [  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]   ]   for   move   in   range  (  1     k   +   1  ):   # find probability for cell (i j)   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   cur   =   0.0   # for every position reachable from (xy)   for   d   in   directions  :   u     v   =   i   +   d  [  0  ]   j   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   prevMove  [  u  ][  v  ]   /   8.0   # store the result   currMove  [  i  ][  j  ]   =   cur   # update previous state   prevMove   =   [  row  [:]   for   row   in   currMove  ]   # return the result   return   prevMove  [  x  ][  y  ]   if   __name__   ==   '__main__'  :   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      double  []     prevMove     =     new     double  [  n       n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )      prevMove  [  i       j  ]     =     1.0  ;      // dp to store results of current move      double  []     currMove     =     new     double  [  n       n  ];      int  []     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  int     d     =     0  ;     d      <     directions  .  GetLength  (  0  );     d  ++  )     {      int     u     =     i     +     directions  [  d       0  ];      int     v     =     j     +     directions  [  d       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u       v  ]     /     8.0  ;      }      // store the result      currMove  [  i       j  ]     =     cur  ;      }      }      // update previous state      Array  .  Copy  (  currMove       prevMove       n     *     n  );      }      // return the result      return     prevMove  [  x       y  ];      }      static     void     Main  ()     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  findProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   function     findProb  (  n       x       y       k  )     {      // dp to store results of previous move      let     prevMove     =     Array  .  from  ({     length  :     n     }         ()     =>     Array  (  n  ).  fill  (  1.0  ));      // dp to store results of current move      let     currMove     =     Array  .  from  ({     length  :     n     }         ()     =>     Array  (  n  ).  fill  (  0.0  ));      const     directions     =     [      [  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]      [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]      ];      for     (  let     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      let     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  let     d     of     directions  )     {      let     u     =     i     +     d  [  0  ];      let     v     =     j     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      prevMove     =     currMove  .  map  (  row     =>     [...  row  ]);      }      // return the result      return     prevMove  [  x  ][  y  ].  toFixed  (  6  );   }   let     n     =     8       x     =     0       y     =     0       k     =     3  ;   console  .  log  (  findProb  (  n       x       y       k  ));   

Produksjon
0.125  
Lag quiz