Print alle priemfactoren en hun krachten uit

Gegeven een getal N, druk dan al zijn unieke priemfactoren en hun machten af ​​in N. 

Voorbeelden:  

Input: N = 100 Output: Factor Power 2 2 5 2 Input: N = 35 Output: Factor Power 5 1 7 1 
Aanbevolen: los het op ' OEFENING ' eerst voordat u verder gaat met de oplossing.


A Eenvoudige oplossing is om eerst vind priemfactoren van N . Zoek vervolgens voor elke priemfactor de hoogste macht die N verdeelt en druk deze af.
Een Efficiënte oplossing is te gebruiken Zeef van Eratosthenes . 

  1)   First compute an array s[N+1] using   Sieve of Eratosthenes  . s[i] = Smallest prime factor of 'i' that divides 'i'. For example let N = 10 s[2] = s[4] = s[6] = s[8] = s[10] = 2; s[3] = s[9] = 3; s[5] = 5; s[7] = 7;   2)   Using the above computed array s[] we can find all powers in O(Log N) time. curr = s[N]; // Current prime factor of N cnt = 1; // Power of current prime factor // Printing prime factors and their powers   while   (N > 1) { N   /=   s[N]; // N is now N/s[N]. If new N also has its // smallest prime factor as curr increment // power and continue   if   (curr == s[N]) { cnt++;   continue;   } // Print prime factor and its power   print  (curr cnt); // Update current prime factor as s[N] and // initializing count as 1. curr = s[N]; cnt = 1; } 

Hieronder vindt u de implementatie van bovenstaande stappen.

C++
   // C++ Program to print prime factors and their   // powers using Sieve Of Eratosthenes   #include       using     namespace     std  ;   // Using SieveOfEratosthenes to find smallest prime   // factor of all the numbers.   // For example if N is 10   // s[2] = s[4] = s[6] = s[10] = 2   // s[3] = s[9] = 3   // s[5] = 5   // s[7] = 7   void     sieveOfEratosthenes  (  int     N       int     s  [])   {      // Create a boolean array 'prime[0..n]' and      // initialize all entries in it as false.      vector      <  bool  >     prime  (  N  +  1       false  );      // Initializing smallest factor equal to 2      // for all the even numbers      for     (  int     i  =  2  ;     i   <=  N  ;     i  +=  2  )      s  [  i  ]     =     2  ;      // For odd numbers less than equal to n      for     (  int     i  =  3  ;     i   <=  N  ;     i  +=  2  )      {      if     (  prime  [  i  ]     ==     false  )      {      // s(i) for a prime is the number itself      s  [  i  ]     =     i  ;      // For all multiples of current prime number      for     (  int     j  =  i  ;     j  *  i   <=  N  ;     j  +=  2  )      {      if     (  prime  [  i  *  j  ]     ==     false  )      {      prime  [  i  *  j  ]     =     true  ;      // i is the smallest prime factor for      // number 'i*j'.      s  [  i  *  j  ]     =     i  ;      }      }      }      }   }   // Function to generate prime factors and its power   void     generatePrimeFactors  (  int     N  )   {      // s[i] is going to store smallest prime factor      // of i.      int     s  [  N  +  1  ];      // Filling values in s[] using sieve      sieveOfEratosthenes  (  N       s  );      printf  (  'Factor Power  n  '  );      int     curr     =     s  [  N  ];     // Current prime factor of N      int     cnt     =     1  ;     // Power of current prime factor      // Printing prime factors and their powers      while     (  N     >     1  )      {      N     /=     s  [  N  ];      // N is now N/s[N]. If new N also has smallest      // prime factor as curr increment power      if     (  curr     ==     s  [  N  ])      {      cnt  ++  ;      continue  ;      }      printf  (  '%d  t  %d  n  '       curr       cnt  );      // Update current prime factor as s[N] and      // initializing count as 1.      curr     =     s  [  N  ];      cnt     =     1  ;      }   }   //Driver Program   int     main  ()   {      int     N     =     360  ;      generatePrimeFactors  (  N  );      return     0  ;   }   
Java
   // Java Program to print prime    // factors and their powers using   // Sieve Of Eratosthenes   import     java.io.*  ;   public     class   GFG   {   // Using SieveOfEratosthenes    // to find smallest prime   // factor of all the numbers.   // For example if N is 10   // s[2] = s[4] = s[6] = s[10] = 2   // s[3] = s[9] = 3   // s[5] = 5   // s[7] = 7   static     void     sieveOfEratosthenes  (  int     N           int     s  []  )   {      // Create a boolean array       // 'prime[0..n]' and initialize      // all entries in it as false.      boolean  []     prime     =     new     boolean  [  N     +     1  ]  ;      // Initializing smallest       // factor equal to 2      // for all the even numbers      for     (  int     i     =     2  ;     i      <=     N  ;     i     +=     2  )      s  [  i  ]     =     2  ;      // For odd numbers less       // then equal to n      for     (  int     i     =     3  ;     i      <=     N  ;     i     +=     2  )      {      if     (  prime  [  i  ]     ==     false  )      {      // s(i) for a prime is      // the number itself      s  [  i  ]     =     i  ;      // For all multiples of       // current prime number      for     (  int     j     =     i  ;     j     *     i      <=     N  ;     j     +=     2  )      {      if     (  prime  [  i     *     j  ]     ==     false  )      {      prime  [  i     *     j  ]     =     true  ;      // i is the smallest prime       // factor for number 'i*j'.      s  [  i     *     j  ]     =     i  ;      }      }      }      }   }   // Function to generate prime    // factors and its power   static     void     generatePrimeFactors  (  int     N  )   {      // s[i] is going to store       // smallest prime factor of i.      int  []     s     =     new     int  [  N     +     1  ]  ;      // Filling values in s[] using sieve      sieveOfEratosthenes  (  N       s  );      System  .  out  .  println  (  'Factor Power'  );      int     curr     =     s  [  N  ]  ;     // Current prime factor of N      int     cnt     =     1  ;     // Power of current prime factor      // Printing prime factors       // and their powers      while     (  N     >     1  )      {      N     /=     s  [  N  ]  ;      // N is now N/s[N]. If new N       // also has smallest prime       // factor as curr increment power      if     (  curr     ==     s  [  N  ]  )      {      cnt  ++  ;      continue  ;      }      System  .  out  .  println  (  curr     +     't'     +     cnt  );      // Update current prime factor       // as s[N] and initializing      // count as 1.      curr     =     s  [  N  ]  ;      cnt     =     1  ;      }   }   // Driver Code   public     static     void     main  (  String  []     args  )   {      int     N     =     360  ;      generatePrimeFactors  (  N  );   }   }   // This code is contributed by mits   
Python3
   # Python3 program to print prime   # factors and their powers    # using Sieve Of Eratosthenes   # Using SieveOfEratosthenes to   # find smallest prime factor    # of all the numbers.   # For example if N is 10   # s[2] = s[4] = s[6] = s[10] = 2   # s[3] = s[9] = 3   # s[5] = 5   # s[7] = 7   def   sieveOfEratosthenes  (  N     s  ):   # Create a boolean array    # 'prime[0..n]' and initialize   # all entries in it as false.   prime   =   [  False  ]   *   (  N  +  1  )   # Initializing smallest factor   # equal to 2 for all the even    # numbers   for   i   in   range  (  2     N  +  1     2  ):   s  [  i  ]   =   2   # For odd numbers less than    # equal to n   for   i   in   range  (  3     N  +  1     2  ):   if   (  prime  [  i  ]   ==   False  ):   # s(i) for a prime is   # the number itself   s  [  i  ]   =   i   # For all multiples of   # current prime number   for   j   in   range  (  i     int  (  N   /   i  )   +   1     2  ):   if   (  prime  [  i  *  j  ]   ==   False  ):   prime  [  i  *  j  ]   =   True   # i is the smallest    # prime factor for   # number 'i*j'.   s  [  i   *   j  ]   =   i   # Function to generate prime   # factors and its power   def   generatePrimeFactors  (  N  ):   # s[i] is going to store   # smallest prime factor    # of i.   s   =   [  0  ]   *   (  N  +  1  )   # Filling values in s[]    # using sieve   sieveOfEratosthenes  (  N     s  )   print  (  'Factor Power'  )   # Current prime factor of N   curr   =   s  [  N  ]   # Power of current prime factor   cnt   =   1   # Printing prime factors and    #their powers   while   (  N   >   1  ):   N   //=   s  [  N  ]   # N is now N/s[N]. If new N    # also has smallest prime    # factor as curr increment   # power   if   (  curr   ==   s  [  N  ]):   cnt   +=   1   continue   print  (  str  (  curr  )   +   '  t  '   +   str  (  cnt  ))   # Update current prime factor   # as s[N] and initializing    # count as 1.   curr   =   s  [  N  ]   cnt   =   1   #Driver Program   N   =   360   generatePrimeFactors  (  N  )   # This code is contributed by Ansu Kumari   
C#
   // C# Program to print prime    // factors and their powers using   // Sieve Of Eratosthenes   class     GFG   {   // Using SieveOfEratosthenes    // to find smallest prime   // factor of all the numbers.   // For example if N is 10   // s[2] = s[4] = s[6] = s[10] = 2   // s[3] = s[9] = 3   // s[5] = 5   // s[7] = 7   static     void     sieveOfEratosthenes  (  int     N       int  []     s  )   {      // Create a boolean array       // 'prime[0..n]' and initialize      // all entries in it as false.      bool  []     prime     =     new     bool  [  N     +     1  ];      // Initializing smallest       // factor equal to 2      // for all the even numbers      for     (  int     i     =     2  ;     i      <=     N  ;     i     +=     2  )      s  [  i  ]     =     2  ;      // For odd numbers less       // then equal to n      for     (  int     i     =     3  ;     i      <=     N  ;     i     +=     2  )      {      if     (  prime  [  i  ]     ==     false  )      {      // s(i) for a prime is      // the number itself      s  [  i  ]     =     i  ;      // For all multiples of       // current prime number      for     (  int     j     =     i  ;     j     *     i      <=     N  ;     j     +=     2  )      {      if     (  prime  [  i     *     j  ]     ==     false  )      {      prime  [  i     *     j  ]     =     true  ;      // i is the smallest prime       // factor for number 'i*j'.      s  [  i     *     j  ]     =     i  ;      }      }      }      }   }   // Function to generate prime    // factors and its power   static     void     generatePrimeFactors  (  int     N  )   {      // s[i] is going to store       // smallest prime factor of i.      int  []     s     =     new     int  [  N     +     1  ];      // Filling values in s[] using sieve      sieveOfEratosthenes  (  N       s  );      System  .  Console  .  WriteLine  (  'Factor Power'  );      int     curr     =     s  [  N  ];     // Current prime factor of N      int     cnt     =     1  ;     // Power of current prime factor      // Printing prime factors       // and their powers      while     (  N     >     1  )      {      N     /=     s  [  N  ];      // N is now N/s[N]. If new N       // also has smallest prime       // factor as curr increment power      if     (  curr     ==     s  [  N  ])      {      cnt  ++  ;      continue  ;      }      System  .  Console  .  WriteLine  (  curr     +     't'     +     cnt  );      // Update current prime factor       // as s[N] and initializing      // count as 1.      curr     =     s  [  N  ];      cnt     =     1  ;      }   }   // Driver Code   static     void     Main  ()   {      int     N     =     360  ;      generatePrimeFactors  (  N  );   }   }   // This code is contributed by mits   
PHP
      // PHP Program to print prime factors and    // their powers using Sieve Of Eratosthenes   // Using SieveOfEratosthenes to find smallest    // prime factor of all the numbers.   // For example if N is 10   // s[2] = s[4] = s[6] = s[10] = 2   // s[3] = s[9] = 3   // s[5] = 5   // s[7] = 7   function   sieveOfEratosthenes  (  $N     &  $s  )   {   // Create a boolean array 'prime[0..n]' and   // initialize all entries in it as false.   $prime   =   array_fill  (  0     $N   +   1     false  );   // Initializing smallest factor equal    // to 2 for all the even numbers   for   (  $i   =   2  ;   $i    <=   $N  ;   $i   +=   2  )   $s  [  $i  ]   =   2  ;   // For odd numbers less than equal to n   for   (  $i   =   3  ;   $i    <=   $N  ;   $i   +=   2  )   {   if   (  $prime  [  $i  ]   ==   false  )   {   // s(i) for a prime is the   // number itself   $s  [  $i  ]   =   $i  ;   // For all multiples of current    // prime number   for   (  $j   =   $i  ;   $j   *   $i    <=   $N  ;   $j   +=   2  )   {   if   (  $prime  [  $i   *   $j  ]   ==   false  )   {   $prime  [  $i   *   $j  ]   =   true  ;   // i is the smallest prime factor    // for number 'i*j'.   $s  [  $i   *   $j  ]   =   $i  ;   }   }   }   }   }   // Function to generate prime factors    // and its power   function   generatePrimeFactors  (  $N  )   {   // s[i] is going to store smallest    // prime factor of i.   $s   =   array_fill  (  0     $N   +   1     0  );   // Filling values in s[] using sieve   sieveOfEratosthenes  (  $N     $s  );   print  (  'Factor Power  n  '  );   $curr   =   $s  [  $N  ];   // Current prime factor of N   $cnt   =   1  ;   // Power of current prime factor   // Printing prime factors and their powers   while   (  $N   >   1  )   {   if  (  $s  [  $N  ])   $N   =   (  int  )(  $N   /   $s  [  $N  ]);   // N is now N/s[N]. If new N als has smallest   // prime factor as curr increment power   if   (  $curr   ==   $s  [  $N  ])   {   $cnt  ++  ;   continue  ;   }   print  (  $curr   .   '  t  '   .   $cnt   .   '  n  '  );   // Update current prime factor as s[N]   // and initializing count as 1.   $curr   =   $s  [  $N  ];   $cnt   =   1  ;   }   }   // Driver Code   $N   =   360  ;   generatePrimeFactors  (  $N  );   // This code is contributed by mits   ?>   
JavaScript
    <  script  >   // javascript Program to print prime    // factors and their powers using   // Sieve Of Eratosthenes   // Using SieveOfEratosthenes    // to find smallest prime   // factor of all the numbers.   // For example if N is 10   // s[2] = s[4] = s[6] = s[10] = 2   // s[3] = s[9] = 3   // s[5] = 5   // s[7] = 7   function     sieveOfEratosthenes  (  N       s  )   {      // Create a boolean array       // 'prime[0..n]' and initialize      // all entries in it as false.      prime     =     Array  .  from  ({  length  :     N  +  1  }     (  _       i  )     =>     false  );      // Initializing smallest       // factor equal to 2      // for all the even numbers      for     (  i     =     2  ;     i      <=     N  ;     i     +=     2  )      s  [  i  ]     =     2  ;      // For odd numbers less       // then equal to n      for     (  i     =     3  ;     i      <=     N  ;     i     +=     2  )      {      if     (  prime  [  i  ]     ==     false  )      {      // s(i) for a prime is      // the number itself      s  [  i  ]     =     i  ;      // For all multiples of       // current prime number      for     (  j     =     i  ;     j     *     i      <=     N  ;     j     +=     2  )      {      if     (  prime  [  i     *     j  ]     ==     false  )      {      prime  [  i     *     j  ]     =     true  ;      // i is the smallest prime       // factor for number 'i*j'.      s  [  i     *     j  ]     =     i  ;      }      }      }      }   }   // Function to generate prime    // factors and its power   function     generatePrimeFactors  (  N  )   {      // s[i] is going to store       // smallest prime factor of i.      var     s     =     Array  .  from  ({  length  :     N  +  1  }     (  _       i  )     =>     0  );      // Filling values in s using sieve      sieveOfEratosthenes  (  N       s  );      document  .  write  (  'Factor Power'  );      var     curr     =     s  [  N  ];     // Current prime factor of N      var     cnt     =     1  ;     // Power of current prime factor      // Printing prime factors       // and their powers      while     (  N     >     1  )      {      N     /=     s  [  N  ];      // N is now N/s[N]. If new N       // also has smallest prime       // factor as curr increment power      if     (  curr     ==     s  [  N  ])      {      cnt  ++  ;      continue  ;      }      document  .  write  (  '  
'
+ curr + 't' + cnt ); // Update current prime factor // as s[N] and initializing // count as 1. curr = s [ N ]; cnt = 1 ; } } // Driver Code var N = 360 ; generatePrimeFactors ( N ); // This code contributed by Princi Singh < /script>

Uitgang:  
 

Factor Power 2 3 3 2 5 1 

Tijdcomplexiteit: O(n*log(log(n)))
Hulpruimte: Op)

Het bovenstaande algoritme vindt alle machten in O(Log N) tijd nadat we s[] hebben ingevuld. Dit kan erg handig zijn in een competitieve omgeving waar we een bovengrens hebben en we voor veel testgevallen priemfactoren en hun bevoegdheden moeten berekenen. In dit scenario hoeft de array slechts één keer te worden gevuld.