Zoek maximale lengte slangenreeks

Zoek maximale lengte slangenreeks

Gegeven een raster van getallen, zoek maximale lengte slangenreeks en druk het af. Als er meerdere slangensequenties bestaan ​​met de maximale lengte print een van deze.

Een slangenreeks bestaat uit aangrenzende getallen in het raster zodat voor elk nummer het nummer rechts of het onderstaande nummer +1 of -1 de waarde ervan is. Als u bijvoorbeeld op locatie (x y) in het raster bent, kunt u naar rechts gaan, d.w.z. (x y+1) als dat nummer ± 1 is of naar beneden gaat, d.w.z. (x+1 y) als dat aantal ± 1 is.

For example   9   6 5 2    8 7 6 5    7 3 1   6    1 1 1   7   In above grid the longest snake sequence is: (9 8 7 6 5 6 7) 

Hieronder figuur toont alle mogelijke paden:

simpel

We raden u ten zeerste aan om uw browser te minimaliseren en dit eerst zelf te proberen.

Het idee is om dynamische programmering te gebruiken. Voor elke cel van de matrix behouden we de maximale lengte van een slang die eindigt in de huidige cel. De maximale lengte slangensequentie heeft een maximale waarde. De maximale waardecel komt overeen met de staart van de slang. Om de slang af te drukken, moeten we vanaf staart helemaal terug naar Snake's hoofd.

Let   T[i][i]   represent maximum length of a snake which ends at cell (i j) then for given matrix M the DP relation is defined as T[0][0] = 0  T[i][j] = max(T[i][j] T[i][j - 1] + 1) if M[i][j] = M[i][j - 1] ± 1  T[i][j] = max(T[i][j] T[i - 1][j] + 1) if M[i][j] = M[i - 1][j] ± 1 

Hieronder is de implementatie van het idee 

C++
   // C++ program to find maximum length   // Snake sequence and print it   #include          using     namespace     std  ;   #define M 4   #define N 4   struct     Point   {      int     x       y  ;   };   // Function to find maximum length Snake sequence path   // (i j) corresponds to tail of the snake   list   <  Point  >     findPath  (  int     grid  [  M  ][  N  ]     int     mat  [  M  ][  N  ]      int     i       int     j  )   {      list   <  Point  >     path  ;      Point     pt     =     {  i       j  };      path  .  push_front  (  pt  );      while     (  grid  [  i  ][  j  ]     !=     0  )      {      if     (  i     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i     -     1  ][  j  ])      {      pt     =     {  i     -     1       j  };      path  .  push_front  (  pt  );      i  --  ;      }      else     if     (  j     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i  ][  j     -     1  ])      {      pt     =     {  i       j     -     1  };      path  .  push_front  (  pt  );      j  --  ;      }      }      return     path  ;   }   // Function to find maximum length Snake sequence   void     findSnakeSequence  (  int     mat  [  M  ][  N  ])   {      // table to store results of subproblems      int     lookup  [  M  ][  N  ];      // initialize by 0      memset  (  lookup       0       sizeof     lookup  );      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )      {      // do except for (0 0) cell      if     (  i     ||     j  )      {      // look above      if     (  i     >     0     &&      abs  (  mat  [  i     -     1  ][  j  ]     -     mat  [  i  ][  j  ])     ==     1  )      {      lookup  [  i  ][  j  ]     =     max  (  lookup  [  i  ][  j  ]      lookup  [  i     -     1  ][  j  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ])      {      max_len     =     lookup  [  i  ][  j  ];      max_row     =     i       max_col     =     j  ;      }      }      // look left      if     (  j     >     0     &&      abs  (  mat  [  i  ][  j     -     1  ]     -     mat  [  i  ][  j  ])     ==     1  )      {      lookup  [  i  ][  j  ]     =     max  (  lookup  [  i  ][  j  ]      lookup  [  i  ][  j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ])      {      max_len     =     lookup  [  i  ][  j  ];      max_row     =     i       max_col     =     j  ;      }      }      }      }      }      cout      < <     'Maximum length of Snake sequence is: '       < <     max_len      < <     endl  ;      // find maximum length Snake sequence path      list   <  Point  >     path     =     findPath  (  lookup       mat       max_row        max_col  );      cout      < <     'Snake sequence is:'  ;      for     (  auto     it     =     path  .  begin  ();     it     !=     path  .  end  ();     it  ++  )      cout      < <     endl      < <     mat  [  it  ->  x  ][  it  ->  y  ]      < <     ' ('       < <     it  ->  x      < <     ' '      < <     it  ->  y      < <     ')'     ;   }   // Driver code   int     main  ()   {      int     mat  [  M  ][  N  ]     =      {      {  9       6       5       2  }      {  8       7       6       5  }      {  7       3       1       6  }      {  1       1       1       7  }      };      findSnakeSequence  (  mat  );      return     0  ;   }   
Java
   // Java program to find maximum length   // Snake sequence and print it   import     java.util.*  ;   class   GFG      {   static     int     M     =     4  ;   static     int     N     =     4  ;   static     class   Point   {      int     x       y  ;      public     Point  (  int     x       int     y  )         {      this  .  x     =     x  ;      this  .  y     =     y  ;      }   };   // Function to find maximum length Snake sequence path   // (i j) corresponds to tail of the snake   static     List   <  Point  >     findPath  (  int     grid  [][]           int     mat  [][]           int     i       int     j  )   {      List   <  Point  >     path     =     new     LinkedList   <>  ();      Point     pt     =     new     Point  (  i       j  );      path  .  add  (  0       pt  );      while     (  grid  [  i  ][  j  ]     !=     0  )      {      if     (  i     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i     -     1  ][  j  ]  )      {      pt     =     new     Point  (  i     -     1       j  );      path  .  add  (  0       pt  );      i  --  ;      }      else     if     (  j     >     0     &&     grid  [  i  ][  j  ]     -     1     ==         grid  [  i  ][  j     -     1  ]  )      {      pt     =     new     Point  (  i       j     -     1  );      path  .  add  (  0       pt  );      j  --  ;      }      }      return     path  ;   }   // Function to find maximum length Snake sequence   static     void     findSnakeSequence  (  int     mat  [][]  )   {      // table to store results of subproblems      int     [][]  lookup     =     new     int  [  M  ][  N  ]  ;      // initialize by 0      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )      {      // do except for (0 0) cell      if     (  i     !=     0     ||     j     !=     0  )      {      // look above      if     (  i     >     0     &&      Math  .  abs  (  mat  [  i     -     1  ][  j  ]     -         mat  [  i  ][  j  ]  )     ==     1  )      {      lookup  [  i  ][  j  ]     =     Math  .  max  (  lookup  [  i  ][  j  ]        lookup  [  i     -     1  ][  j  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ]  )      {      max_len     =     lookup  [  i  ][  j  ]  ;      max_row     =     i  ;     max_col     =     j  ;      }      }      // look left      if     (  j     >     0     &&      Math  .  abs  (  mat  [  i  ][  j     -     1  ]     -         mat  [  i  ][  j  ]  )     ==     1  )      {      lookup  [  i  ][  j  ]     =     Math  .  max  (  lookup  [  i  ][  j  ]        lookup  [  i  ][  j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ]  )      {      max_len     =     lookup  [  i  ][  j  ]  ;      max_row     =     i  ;     max_col     =     j  ;      }      }      }      }      }      System  .  out  .  print  (  'Maximum length of Snake '     +         'sequence is: '     +     max_len     +     'n'  );      // find maximum length Snake sequence path      List   <  Point  >     path     =     findPath  (  lookup       mat       max_row        max_col  );      System  .  out  .  print  (  'Snake sequence is:'  );      for     (  Point     it     :     path  )      System  .  out  .  print  (  'n'     +     mat  [  it  .  x  ][  it  .  y  ]     +     ' ('     +         it  .  x     +     ' '     +     it  .  y     +     ')'  );   }   // Driver code   public     static     void     main  (  String  []     args  )   {      int     mat  [][]     =     {{  9       6       5       2  }      {  8       7       6       5  }      {  7       3       1       6  }      {  1       1       1       7  }};      findSnakeSequence  (  mat  );   }   }   // This code is contributed by 29AjayKumar   
C#
   // C# program to find maximum length   // Snake sequence and print it   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      static     int     M     =     4  ;      static     int     N     =     4  ;      public     class     Point     {      public     int     x       y  ;      public     Point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // Function to find maximum length Snake sequence path      // (i j) corresponds to tail of the snake      static     List   <  Point  >     findPath  (  int  [     ]     grid       int  [     ]     mat        int     i       int     j  )      {      List   <  Point  >     path     =     new     List   <  Point  >  ();      Point     pt     =     new     Point  (  i       j  );      path  .  Insert  (  0       pt  );      while     (  grid  [  i       j  ]     !=     0  )     {      if     (  i     >     0     &&     grid  [  i       j  ]     -     1     ==     grid  [  i     -     1       j  ])     {      pt     =     new     Point  (  i     -     1       j  );      path  .  Insert  (  0       pt  );      i  --  ;      }      else     if     (  j     >     0      &&     grid  [  i       j  ]     -     1     ==     grid  [  i       j     -     1  ])     {      pt     =     new     Point  (  i       j     -     1  );      path  .  Insert  (  0       pt  );      j  --  ;      }      }      return     path  ;      }      // Function to find maximum length Snake sequence      static     void     findSnakeSequence  (  int  [     ]     mat  )      {      // table to store results of subproblems      int  [     ]     lookup     =     new     int  [  M       N  ];      // initialize by 0      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      // do except for (0 0) cell      if     (  i     !=     0     ||     j     !=     0  )     {      // look above      if     (  i     >     0      &&     Math  .  Abs  (  mat  [  i     -     1       j  ]      -     mat  [  i       j  ])      ==     1  )     {      lookup  [  i       j  ]     =     Math  .  Max  (      lookup  [  i       j  ]      lookup  [  i     -     1       j  ]     +     1  );      if     (  max_len      <     lookup  [  i       j  ])     {      max_len     =     lookup  [  i       j  ];      max_row     =     i  ;      max_col     =     j  ;      }      }      // look left      if     (  j     >     0      &&     Math  .  Abs  (  mat  [  i       j     -     1  ]      -     mat  [  i       j  ])      ==     1  )     {      lookup  [  i       j  ]     =     Math  .  Max  (      lookup  [  i       j  ]      lookup  [  i       j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i       j  ])     {      max_len     =     lookup  [  i       j  ];      max_row     =     i  ;      max_col     =     j  ;      }      }      }      }      }      Console  .  Write  (  'Maximum length of Snake '      +     'sequence is: '     +     max_len     +     'n'  );      // find maximum length Snake sequence path      List   <  Point  >     path      =     findPath  (  lookup       mat       max_row       max_col  );      Console  .  Write  (  'Snake sequence is:'  );      foreach  (  Point     it     in     path  )      Console  .  Write  (  'n'     +     mat  [  it  .  x       it  .  y  ]     +     ' ('      +     it  .  x     +     ' '     +     it  .  y     +     ')'  );      }      // Driver code      public     static     void     Main  (  String  []     args  )      {      int  [     ]     mat     =     {     {     9       6       5       2     }      {     8       7       6       5     }      {     7       3       1       6     }      {     1       1       1       7     }     };      findSnakeSequence  (  mat  );      }   }   // This code is contributed by Princi Singh   
Python3
   def   snakesequence  (  S     m     n  ):   sequence   =   {}   DP   =   [[  1   for   x   in   range  (  m  +  1  )]   for   x   in   range  (  n  +  1  )]   a     b     maximum   =   0     0     0   position   =   [  0     0  ]   for   i   in   range  (  0     n  +  1  ):   for   j   in   range  (  0     m  +  1  ):   a     b   =   0     0   p   =   'initial'   if  (  i   >   0   and   abs  (  S  [  i  ][  j  ]   -   S  [  i  -  1  ][  j  ])   ==   1  ):   a   =   DP  [  i  -  1  ][  j  ]   if  (  j   >   0   and   abs  (  S  [  i  ][  j  ]   -   S  [  i  ][  j  -  1  ])   ==   1  ):   b   =   DP  [  i  ][  j  -  1  ]   if   a   !=   0   and   a   >=   b  :   p   =   str  (  i  -  1  )   +   ' '   +   str  (  j  )   elif   b   !=   0  :   p   =   str  (  i  )   +   ' '   +   str  (  j  -  1  )   q   =   str  (  i  )   +   ' '   +   str  (  j  )   sequence  [  q  ]   =   p   DP  [  i  ][  j  ]   =   DP  [  i  ][  j  ]   +   max  (  a     b  )   if   DP  [  i  ][  j  ]   >=   maximum  :   maximum   =   DP  [  i  ][  j  ]   position  [  0  ]   =   i   position  [  1  ]   =   j   snakeValues   =   []   snakePositions   =   []   snakeValues  .  append  (  S  [  position  [  0  ]][  position  [  1  ]])   check   =   'found'   str_next   =   str  (  position  [  0  ])   +   ' '   +   str  (  position  [  1  ])   findingIndices   =   sequence  [  str_next  ]  .  split  ()   while  (  check   ==   'found'  ):   if   sequence  [  str_next  ]   ==   'initial'  :   snakePositions  .  insert  (  0     str_next  )   check   =   'end'   continue   findingIndices   =   sequence  [  str_next  ]  .  split  ()   g   =   int  (  findingIndices  [  0  ])   h   =   int  (  findingIndices  [  1  ])   snakeValues  .  insert  (  0     S  [  g  ][  h  ])   snake_position   =   str  (  g  )   +   ' '   +   str  (  h  )   snakePositions  .  insert  (  0     str_next  )   str_next   =   sequence  [  str_next  ]   return   [  snakeValues     snakePositions  ]   S   =   [[  9     6     5     2  ]   [  8     7     6     5  ]   [  7     3     1     6  ]   [  1     1     10     7  ]]   m   =   3   n   =   3   seq   =   snakesequence  (  S     m     n  )   for   i   in   range  (  len  (  seq  [  0  ])):   print  (  seq  [  0  ][  i  ]   ''     seq  [  1  ][  i  ]  .  split  ())   
JavaScript
   function     snakesequence  (  S       m       n  )   {      let     sequence     =     {}      let     DP     =     new     Array  (  n     +     1  )      for     (  var     i     =     0  ;     i      <=     n  ;     i  ++  )      DP  [  i  ]     =     new     Array  (  m     +     1  ).  fill  (  1  )      let     a     =     0       b     =     0       maximum     =     0      let     position     =     [  0       0  ]      for     (  var     i     =     0  ;     i      <=     n  ;     i  ++  )      {      for     (  var     j     =     0  ;     j      <=     m  ;     j  ++  )         {      a     =     0      b     =     0      let     p     =     'initial'      if  (  i     >     0     &&     Math  .  abs  (  S  [  i  ][  j  ]     -     S  [  i  -  1  ][  j  ])     ==     1  )      a     =     DP  [  i  -  1  ][  j  ]      if  (  j     >     0     &&     Math  .  abs  (  S  [  i  ][  j  ]     -     S  [  i  ][  j  -  1  ])     ==     1  )      b     =     DP  [  i  ][  j  -  1  ]      if     (  a     !=     0     &&     a     >=     b  )      p     =     String  (  i  -  1  )     +     ' '     +     String  (  j  )      else     if     (  b     !=     0  )      p     =     String  (  i  )     +     ' '     +     String  (  j  -  1  )      let     q     =     String  (  i  )     +     ' '     +     String  (  j  )      sequence  [  q  ]     =     p      DP  [  i  ][  j  ]     =     DP  [  i  ][  j  ]     +     Math  .  max  (  a       b  )      if     (  DP  [  i  ][  j  ]     >=     maximum  )      {      maximum     =     DP  [  i  ][  j  ]      position  [  0  ]     =     i      position  [  1  ]     =     j      }      }      }      let     snakeValues     =     []      let     snakePositions     =     []      snakeValues  .  push  (  S  [  position  [  0  ]][  position  [  1  ]])      let     check     =     'found'      let     String_next     =     String  (  position  [  0  ])     +     ' '     +     String  (  position  [  1  ])      let     findingIndices     =     sequence  [  String_next  ].  split  (  ' '  )      while  (  check     ==     'found'  )      {      if     (  sequence  [  String_next  ]     ==     'initial'  )      {      snakePositions  .  unshift  (  String_next  )      check     =     'end'      continue      }      findingIndices     =     sequence  [  String_next  ].  split  (  ' '  )      let     g     =     parseInt  (  findingIndices  [  0  ])      let     h     =     parseInt  (  findingIndices  [  1  ])      snakeValues  .  unshift  (  S  [  g  ][  h  ])      let     snake_position     =     String  (  g  )     +     ' '     +     String  (  h  )      snakePositions  .  unshift  (  String_next  )      String_next     =     sequence  [  String_next  ]      }      return     [  snakeValues       snakePositions  ]   }   // Driver Code    let     S     =     [[  9       6       5       2  ]      [  8       7       6       5  ]      [  7       3       1       6  ]      [  1       1       10       7  ]]   let     m     =     3   let     n     =     3   let     seq     =     snakesequence  (  S       m       n  )   for     (  var     i     =     0  ;     i      <     seq  [  0  ].  length  ;     i  ++  )         console  .  log  (  seq  [  0  ][  i  ]     +     ''       seq  [  1  ][  i  ].  split  (  ' '  ))   

Uitvoer
Maximum length of Snake sequence is: 6 Snake sequence is: 9 (0 0) 8 (1 0) 7 (1 1) 6 (1 2) 5 (1 3) 6 (2 3) 7 (3 3) 

Tijdcomplexiteit van bovenstaande oplossing is O (M*N). Hulpruimte die wordt gebruikt door bovenstaande oplossing is O (m*n). Als we niet verplicht zijn om af te drukken, kan de slangenruimte verder worden gereduceerd tot O (n), omdat we alleen het resultaat van de laatste rij gebruiken.