보간 검색

n 균일하게 분포된 값의 정렬된 배열이 주어지면 arr[] 배열에서 특정 요소 x를 검색하는 함수를 작성합니다. 
선형 검색은 O(n) 시간에 요소를 찾습니다. 점프 검색 O(n) 시간이 걸리고 이진 검색 O(log n) 시간이 걸립니다. 
보간 검색은 다음보다 개선되었습니다. 이진 검색 예를 들어 정렬된 배열의 값이 균일하게 분포되는 경우입니다. 보간은 알려진 데이터 포인트의 개별 집합 범위 내에서 새로운 데이터 포인트를 구성합니다. 이진 검색은 항상 중간 요소로 이동하여 확인합니다. 반면에 보간 검색은 검색되는 키 값에 따라 다른 위치로 이동할 수 있습니다. 예를 들어 키 값이 마지막 요소에 가까울 경우 보간 검색은 끝 쪽으로 검색을 시작할 가능성이 높습니다.
검색할 위치를 찾으려면 다음 공식을 사용합니다. 

// 수식의 아이디어는 pos의 더 높은 값을 반환하는 것입니다.
// 검색할 요소가 arr[hi]에 가까울 때. 그리고
// arr[lo]에 가까울수록 더 작은 값

arr[] ==> 요소를 검색해야 하는 배열

x     ==> 검색할 요소

lo    ==> arr[]의 시작 인덱스

안녕하세요    ==> arr[]의 끝 색인

이후 = +               

다양한 보간 방법이 있으며 그 중 하나가 선형 보간이라고 알려져 있습니다. 선형 보간은 (x1y1)과 (x2y2)로 가정하는 두 개의 데이터 포인트를 사용하며 공식은 다음과 같습니다.  at point(xy).

이 알고리즘은 사전에서 단어를 검색하는 방식으로 작동합니다. 보간 검색 알고리즘은 이진 검색 알고리즘을 개선합니다.  값을 찾는 공식은 다음과 같습니다. K = > K는 검색 공간을 좁히는 데 사용되는 상수입니다. 이진 검색의 경우 이 상수의 값은 K=(낮음+높음)/2입니다.

  

pos의 공식은 다음과 같이 유도될 수 있다.

 Let's assume that the elements of the array are linearly distributed.    

General equation of line : y = m*x + c.
y is the value in the array and x is its index.

Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)

m = (arr[hi] - arr[lo] )/ (hi - lo)

subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])

연산  
보간 알고리즘의 나머지 부분은 위의 파티션 논리를 제외하고 동일합니다. 

  • 1단계: 루프에서 프로브 위치 공식을 사용하여 'pos' 값을 계산합니다. 
  • 2단계: 일치하는 경우 항목의 색인을 반환하고 종료합니다. 
  • 3단계: 항목이 arr[pos]보다 작으면 왼쪽 하위 배열의 프로브 위치를 계산합니다. 그렇지 않으면 오른쪽 하위 배열에서 동일하게 계산합니다. 
  • 4단계: 일치하는 항목이 발견되거나 하위 배열이 0으로 줄어들 때까지 반복합니다.


아래는 알고리즘의 구현입니다. 

C++
   // C++ program to implement interpolation   // search with recursion   #include          using     namespace     std  ;   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   int     interpolationSearch  (  int     arr  []     int     lo       int     hi       int     x  )   {      int     pos  ;      // Since array is sorted an element present      // in array must be in range defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  double  )(  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))      *     (  x     -     arr  [  lo  ]));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      return     -1  ;   }   // Driver Code   int     main  ()   {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -1  )      cout      < <     'Element found at index '      < <     index  ;      else      cout      < <     'Element not found.'  ;      return     0  ;   }   // This code is contributed by equbalzeeshan   
C
   // C program to implement interpolation search   // with recursion   #include         // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   int     interpolationSearch  (  int     arr  []     int     lo       int     hi       int     x  )   {      int     pos  ;      // Since array is sorted an element present      // in array must be in range defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  double  )(  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))      *     (  x     -     arr  [  lo  ]));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      return     -1  ;   }   // Driver Code   int     main  ()   {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     x     =     18  ;     // Element to be searched      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -1  )      printf  (  'Element found at index %d'       index  );      else      printf  (  'Element not found.'  );      return     0  ;   }   
Java
   // Java program to implement interpolation   // search with recursion   import     java.util.*  ;   class   GFG     {      // If x is present in arr[0..n-1] then returns      // index of it else returns -1.      public     static     int     interpolationSearch  (  int     arr  []       int     lo        int     hi       int     x  )      {      int     pos  ;      // Since array is sorted an element      // present in array must be in range      // defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ]  )     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]  ))      *     (  x     -     arr  [  lo  ]  ));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi        x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1        x  );      }      return     -  1  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     arr  .  length  ;      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -  1  )      System  .  out  .  println  (  'Element found at index '      +     index  );      else      System  .  out  .  println  (  'Element not found.'  );      }   }   // This code is contributed by equbalzeeshan   
Python
   # Python3 program to implement   # interpolation search   # with recursion   # If x is present in arr[0..n-1] then   # returns index of it else returns -1.   def   interpolationSearch  (  arr     lo     hi     x  ):   # Since array is sorted an element present   # in array must be in range defined by corner   if   (  lo    <=   hi   and   x   >=   arr  [  lo  ]   and   x    <=   arr  [  hi  ]):   # Probing the position with keeping   # uniform distribution in mind.   pos   =   lo   +   ((  hi   -   lo  )   //   (  arr  [  hi  ]   -   arr  [  lo  ])   *   (  x   -   arr  [  lo  ]))   # Condition of target found   if   arr  [  pos  ]   ==   x  :   return   pos   # If x is larger x is in right subarray   if   arr  [  pos  ]    <   x  :   return   interpolationSearch  (  arr     pos   +   1     hi     x  )   # If x is smaller x is in left subarray   if   arr  [  pos  ]   >   x  :   return   interpolationSearch  (  arr     lo     pos   -   1     x  )   return   -  1   # Driver code   # Array of items in which   # search will be conducted   arr   =   [  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  ]   n   =   len  (  arr  )   # Element to be searched   x   =   18   index   =   interpolationSearch  (  arr     0     n   -   1     x  )   if   index   !=   -  1  :   print  (  'Element found at index'     index  )   else  :   print  (  'Element not found'  )   # This code is contributed by Hardik Jain   
C#
   // C# program to implement    // interpolation search   using     System  ;   class     GFG  {   // If x is present in    // arr[0..n-1] then    // returns index of it    // else returns -1.   static     int     interpolationSearch  (  int     []  arr       int     lo           int     hi       int     x  )   {      int     pos  ;          // Since array is sorted an element      // present in array must be in range      // defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&         x      <=     arr  [  hi  ])      {          // Probing the position       // with keeping uniform       // distribution in mind.      pos     =     lo     +     (((  hi     -     lo  )     /         (  arr  [  hi  ]     -     arr  [  lo  ]))     *         (  x     -     arr  [  lo  ]));      // Condition of       // target found      if  (  arr  [  pos  ]     ==     x  )         return     pos  ;             // If x is larger x is in right sub array       if  (  arr  [  pos  ]      <     x  )         return     interpolationSearch  (  arr       pos     +     1        hi       x  );             // If x is smaller x is in left sub array       if  (  arr  [  pos  ]     >     x  )         return     interpolationSearch  (  arr       lo           pos     -     1       x  );         }         return     -  1  ;   }   // Driver Code    public     static     void     Main  ()      {          // Array of items on which search will       // be conducted.       int     []  arr     =     new     int  []{     10       12       13       16       18           19       20       21       22       23           24       33       35       42       47     };          // Element to be searched       int     x     =     18  ;         int     n     =     arr  .  Length  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );          // If element was found      if     (  index     !=     -  1  )      Console  .  WriteLine  (  'Element found at index '     +         index  );      else      Console  .  WriteLine  (  'Element not found.'  );   }   }   // This code is contributed by equbalzeeshan   
JavaScript
    <  script  >   // Javascript program to implement Interpolation Search   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   function     interpolationSearch  (  arr       lo       hi       x  ){      let     pos  ;          // Since array is sorted an element present      // in array must be in range defined by corner          if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {          // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo     +     Math  .  floor  (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))     *     (  x     -     arr  [  lo  ]));;          // Condition of target found      if     (  arr  [  pos  ]     ==     x  ){      return     pos  ;      }          // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  ){      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      }          // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  ){      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      }      return     -  1  ;   }   // Driver Code   let     arr     =     [  10       12       13       16       18       19       20       21           22       23       24       33       35       42       47  ];   let     n     =     arr  .  length  ;   // Element to be searched   let     x     =     18   let     index     =     interpolationSearch  (  arr       0       n     -     1       x  );   // If element was found   if     (  index     !=     -  1  ){      document  .  write  (  `Element found at index   ${  index  }  `  )   }  else  {      document  .  write  (  'Element not found'  );   }   // This code is contributed by _saurabh_jaiswal    <  /script>   
PHP
      // PHP program to implement $erpolation search   // with recursion   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   function   interpolationSearch  (  $arr     $lo     $hi     $x  )   {   // Since array is sorted an element present   // in array must be in range defined by corner   if   (  $lo    <=   $hi   &&   $x   >=   $arr  [  $lo  ]   &&   $x    <=   $arr  [  $hi  ])   {   // Probing the position with keeping   // uniform distribution in mind.   $pos   =   (  int  )(  $lo   +   (((  double  )(  $hi   -   $lo  )   /   (  $arr  [  $hi  ]   -   $arr  [  $lo  ]))   *   (  $x   -   $arr  [  $lo  ])));   // Condition of target found   if   (  $arr  [  $pos  ]   ==   $x  )   return   $pos  ;   // If x is larger x is in right sub array   if   (  $arr  [  $pos  ]    <   $x  )   return   interpolationSearch  (  $arr     $pos   +   1     $hi     $x  );   // If x is smaller x is in left sub array   if   (  $arr  [  $pos  ]   >   $x  )   return   interpolationSearch  (  $arr     $lo     $pos   -   1     $x  );   }   return   -  1  ;   }   // Driver Code   // Array of items on which search will   // be conducted.   $arr   =   array  (  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  );   $n   =   sizeof  (  $arr  );   $x   =   47  ;   // Element to be searched   $index   =   interpolationSearch  (  $arr     0     $n   -   1     $x  );   // If element was found   if   (  $index   !=   -  1  )   echo   'Element found at index '  .  $index  ;   else   echo   'Element not found.'  ;   return   0  ;   #This code is contributed by Susobhan Akhuli   ?>   

산출
Element found at index 4 

시간 복잡도: 오(로그 2 (통나무 2 n)) 평균적인 경우, O(n)은 최악의 경우 
보조 공간 복잡성: 오(1)

또 다른 접근 방식:-

이것이 보간 검색의 반복 접근 방식입니다.

  • 1단계: 루프에서 프로브 위치 공식을 사용하여 'pos' 값을 계산합니다. 
  • 2단계: 일치하는 경우 항목의 색인을 반환하고 종료합니다. 
  • 3단계: 항목이 arr[pos]보다 작으면 왼쪽 하위 배열의 프로브 위치를 계산합니다. 그렇지 않으면 오른쪽 하위 배열에서 동일하게 계산합니다. 
  • 4단계: 일치하는 항목이 발견되거나 하위 배열이 0으로 줄어들 때까지 반복합니다.

아래는 알고리즘의 구현입니다. 

C++
   // C++ program to implement interpolation search by using iteration approach   #include       using     namespace     std  ;       int     interpolationSearch  (  int     arr  []     int     n       int     x  )   {      // Find indexes of two corners      int     low     =     0       high     =     (  n     -     1  );      // Since array is sorted an element present      // in array must be in range defined by corner      while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])      {      if     (  low     ==     high  )      {  if     (  arr  [  low  ]     ==     x  )     return     low  ;      return     -1  ;      }      // Probing the position with keeping      // uniform distribution in mind.      int     pos     =     low     +     (((  double  )(  high     -     low  )     /      (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ]));          // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in upper part      if     (  arr  [  pos  ]      <     x  )      low     =     pos     +     1  ;      // If x is smaller x is in the lower part      else      high     =     pos     -     1  ;      }      return     -1  ;   }       // Main function   int     main  ()   {      // Array of items on whighch search will      // be conducted.      int     arr  []     =     {  10       12       13       16       18       19       20       21        22       23       24       33       35       42       47  };      int     n     =     sizeof  (  arr  )  /  sizeof  (  arr  [  0  ]);          int     x     =     18  ;     // Element to be searched      int     index     =     interpolationSearch  (  arr       n       x  );          // If element was found      if     (  index     !=     -1  )      cout      < <     'Element found at index '      < <     index  ;      else      cout      < <     'Element not found.'  ;      return     0  ;   }      //this code contributed by Ajay Singh   
Java
   // Java program to implement interpolation   // search with recursion   import     java.util.*  ;   class   GFG     {      // If x is present in arr[0..n-1] then returns      // index of it else returns -1.      public     static     int     interpolationSearch  (  int     arr  []       int     lo        int     hi       int     x  )      {      int     pos  ;      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ]  )     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]  ))      *     (  x     -     arr  [  lo  ]  ));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi        x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1        x  );      }      return     -  1  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     arr  .  length  ;      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -  1  )      System  .  out  .  println  (  'Element found at index '      +     index  );      else      System  .  out  .  println  (  'Element not found.'  );      }   }   
Python
   # Python equivalent of above C++ code    # Python program to implement interpolation search by using iteration approach   def   interpolationSearch  (  arr     n     x  ):   # Find indexes of two corners    low   =   0   high   =   (  n   -   1  )   # Since array is sorted an element present    # in array must be in range defined by corner    while   low    <=   high   and   x   >=   arr  [  low  ]   and   x    <=   arr  [  high  ]:   if   low   ==   high  :   if   arr  [  low  ]   ==   x  :   return   low  ;   return   -  1  ;   # Probing the position with keeping    # uniform distribution in mind.    pos   =   int  (  low   +   (((  float  (  high   -   low  )  /  (   arr  [  high  ]   -   arr  [  low  ]))   *   (  x   -   arr  [  low  ]))))   # Condition of target found    if   arr  [  pos  ]   ==   x  :   return   pos   # If x is larger x is in upper part    if   arr  [  pos  ]    <   x  :   low   =   pos   +   1  ;   # If x is smaller x is in lower part    else  :   high   =   pos   -   1  ;   return   -  1   # Main function   if   __name__   ==   '__main__'  :   # Array of items on whighch search will    # be conducted.   arr   =   [  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  ]   n   =   len  (  arr  )   x   =   18   # Element to be searched   index   =   interpolationSearch  (  arr     n     x  )   # If element was found   if   index   !=   -  1  :   print   (  'Element found at index'    index  )   else  :   print   (  'Element not found'  )   
C#
   // C# program to implement interpolation search by using   // iteration approach   using     System  ;   class     Program   {      // Interpolation Search function      static     int     InterpolationSearch  (  int  []     arr       int     n       int     x  )      {      int     low     =     0  ;      int     high     =     n     -     1  ;          while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])         {      if     (  low     ==     high  )         {      if     (  arr  [  low  ]     ==     x  )         return     low  ;         return     -  1  ;         }          int     pos     =     low     +     (  int  )(((  float  )(  high     -     low  )     /     (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ]));          if     (  arr  [  pos  ]     ==     x  )         return     pos  ;             if     (  arr  [  pos  ]      <     x  )         low     =     pos     +     1  ;             else         high     =     pos     -     1  ;         }          return     -  1  ;      }          // Main function      static     void     Main  (  string  []     args  )      {      int  []     arr     =     {  10       12       13       16       18       19       20       21       22       23       24       33       35       42       47  };      int     n     =     arr  .  Length  ;          int     x     =     18  ;      int     index     =     InterpolationSearch  (  arr       n       x  );          if     (  index     !=     -  1  )         Console  .  WriteLine  (  'Element found at index '     +     index  );      else         Console  .  WriteLine  (  'Element not found'  );      }   }   // This code is contributed by Susobhan Akhuli   
JavaScript
   // JavaScript program to implement interpolation search by using iteration approach   function     interpolationSearch  (  arr       n       x  )     {   // Find indexes of two corners   let     low     =     0  ;   let     high     =     n     -     1  ;   // Since array is sorted an element present   // in array must be in range defined by corner   while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])     {      if     (  low     ==     high  )     {      if     (  arr  [  low  ]     ==     x  )     {      return     low  ;      }      return     -  1  ;      }      // Probing the position with keeping      // uniform distribution in mind.      let     pos     =     Math  .  floor  (  low     +     (((  high     -     low  )     /     (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ])));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )     {      return     pos  ;      }      // If x is larger x is in upper part      if     (  arr  [  pos  ]      <     x  )     {      low     =     pos     +     1  ;      }      // If x is smaller x is in lower part      else     {      high     =     pos     -     1  ;      }   }   return     -  1  ;   }   // Main function   let     arr     =     [  10       12       13       16       18       19       20       21       22       23       24       33       35       42       47  ];   let     n     =     arr  .  length  ;   let     x     =     18  ;     // Element to be searched   let     index     =     interpolationSearch  (  arr       n       x  );   // If element was found   if     (  index     !=     -  1  )     {   console  .  log  (  'Element found at index'       index  );   }     else     {   console  .  log  (  'Element not found'  );   }   

산출
Element found at index 4 

시간 복잡도: 평균적인 경우 O(log2(log2 n)), 최악의 경우 O(n) 
보조 공간 복잡성: 오(1)