Somma massima di coppie con differenza specifica

Somma massima di coppie con differenza specifica
Provalo su GfG Practice #practiceLinkDiv { display: none! importante; }

Dato un array di numeri interi e un numero k. Possiamo accoppiare due numeri dell'array se la differenza tra loro è strettamente inferiore a k. Il compito è trovare la massima somma possibile di coppie disgiunte. La somma delle coppie P è la somma di tutti i numeri 2P delle coppie.

Esempi:

Ingresso: arr[] = {3 5 10 15 17 12 9} K = 4
Produzione : 62
Spiegazione:
Allora le coppie disgiunte con differenza minore di K sono (3 5) (10 12) (15 17)  
Quindi la somma massima che possiamo ottenere è 3 + 5 + 12 + 10 + 15 + 17 = 62
Nota che un modo alternativo per formare coppie disgiunte è (3 5) (9 12) (15 17), ma questo accoppiamento produce una somma inferiore.

Ingresso: arr[] = {5 15 10 300} k = 12
Produzione : 25

Pratica consigliata Coppie con differenza specifica Provalo!

Approccio: Per prima cosa ordiniamo l'array dato in ordine crescente. Una volta ordinato l'array, attraversiamo l'array. Per ogni elemento proviamo prima ad accoppiarlo con il suo elemento precedente. Perché preferiamo l'elemento precedente? Sia arr[i] può essere accoppiato con arr[i-1] e arr[i-2] (cioè arr[i] – arr[i-1] < K and arr[i]-arr[i-2] < K). Since the array is sorted value of arr[i-1] would be more than arr[i-2]. Also we need to pair with difference less than k it means if arr[i-2] can be paired then arr[i-1] can also be paired in a sorted array. 

Ora osservando i fatti di cui sopra possiamo formulare la nostra soluzione di programmazione dinamica come di seguito 

Sia dp[i] la somma massima di coppie disgiunte che possiamo ottenere utilizzando i primi i elementi dell'array. Supponiamo che attualmente siamo all'i-esima posizione, quindi ci sono due possibilità per noi. 

 Pair up i with (i-1)th element i.e. dp[i] = dp[i-2] + arr[i] + arr[i-1] Don't pair up i.e. dp[i] = dp[i-1]  

L'iterazione precedente richiede tempo O(N) e l'ordinamento dell'array richiederà tempo O(N log N), quindi la complessità temporale totale della soluzione sarà O(N log N) 

Attuazione:

C++
   // C++ program to find maximum pair sum whose   // difference is less than K   #include          using     namespace     std  ;   // method to return maximum sum we can get by   // finding less than K difference pair   int     maxSumPairWithDifferenceLessThanK  (  int     arr  []     int     N       int     K  )   {      // Sort input array in ascending order.      sort  (  arr       arr  +  N  );      // dp[i] denotes the maximum disjoint pair sum      // we can achieve using first i elements      int     dp  [  N  ];      // if no element then dp value will be 0      dp  [  0  ]     =     0  ;      for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // first give previous value to dp[i] i.e.      // no pairing with (i-1)th element      dp  [  i  ]     =     dp  [  i  -1  ];      // if current and previous element can form a pair      if     (  arr  [  i  ]     -     arr  [  i  -1  ]      <     K  )      {      // update dp[i] by choosing maximum between      // pairing and not pairing      if     (  i     >=     2  )      dp  [  i  ]     =     max  (  dp  [  i  ]     dp  [  i  -2  ]     +     arr  [  i  ]     +     arr  [  i  -1  ]);      else      dp  [  i  ]     =     max  (  dp  [  i  ]     arr  [  i  ]     +     arr  [  i  -1  ]);      }      }      // last index will have the result      return     dp  [  N     -     1  ];   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {  3       5       10       15       17       12       9  };      int     N     =     sizeof  (  arr  )  /  sizeof  (  int  );      int     K     =     4  ;      cout      < <     maxSumPairWithDifferenceLessThanK  (  arr       N       K  );      return     0  ;   }   
Java
   // Java program to find maximum pair sum whose   // difference is less than K   import     java.io.*  ;   import     java.util.*  ;   class   GFG     {          // method to return maximum sum we can get by      // finding less than K difference pair      static     int     maxSumPairWithDifferenceLessThanK  (  int     arr  []        int     N       int     K  )      {          // Sort input array in ascending order.      Arrays  .  sort  (  arr  );          // dp[i] denotes the maximum disjoint pair sum      // we can achieve using first i elements      int     dp  []     =     new     int  [  N  ]  ;          // if no element then dp value will be 0      dp  [  0  ]     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // first give previous value to dp[i] i.e.      // no pairing with (i-1)th element      dp  [  i  ]     =     dp  [  i  -  1  ]  ;          // if current and previous element can form a pair      if     (  arr  [  i  ]     -     arr  [  i  -  1  ]      <     K  )      {          // update dp[i] by choosing maximum between      // pairing and not pairing      if     (  i     >=     2  )      dp  [  i  ]     =     Math  .  max  (  dp  [  i  ]       dp  [  i  -  2  ]     +     arr  [  i  ]     +      arr  [  i  -  1  ]  );      else      dp  [  i  ]     =     Math  .  max  (  dp  [  i  ]       arr  [  i  ]     +     arr  [  i  -  1  ]  );      }      }          // last index will have the result      return     dp  [  N     -     1  ]  ;      }      // Driver code to test above methods      public     static     void     main     (  String  []     args  )     {          int     arr  []     =     {  3       5       10       15       17       12       9  };      int     N     =     arr  .  length  ;      int     K     =     4  ;          System  .  out  .  println     (     maxSumPairWithDifferenceLessThanK  (      arr       N       K  ));          }   }   //This code is contributed by vt_m.   
Python3
   # Python3 program to find maximum pair    # sum whose difference is less than K   # method to return maximum sum we can    # get by get by finding less than K   # difference pair   def   maxSumPairWithDifferenceLessThanK  (  arr     N     K  ):   # Sort input array in ascending order.   arr  .  sort  ()   # dp[i] denotes the maximum disjoint   # pair sum we can achieve using first   # i elements   dp   =   [  0  ]   *   N   # if no element then dp value will be 0   dp  [  0  ]   =   0   for   i   in   range  (  1     N  ):   # first give previous value to   # dp[i] i.e. no pairing with   # (i-1)th element   dp  [  i  ]   =   dp  [  i  -  1  ]   # if current and previous element    # can form a pair   if   (  arr  [  i  ]   -   arr  [  i  -  1  ]    <   K  ):   # update dp[i] by choosing   # maximum between pairing   # and not pairing   if   (  i   >=   2  ):   dp  [  i  ]   =   max  (  dp  [  i  ]   dp  [  i  -  2  ]   +   arr  [  i  ]   +   arr  [  i  -  1  ]);   else  :   dp  [  i  ]   =   max  (  dp  [  i  ]   arr  [  i  ]   +   arr  [  i  -  1  ]);   # last index will have the result   return   dp  [  N   -   1  ]   # Driver code to test above methods   arr   =   [  3     5     10     15     17     12     9  ]   N   =   len  (  arr  )   K   =   4   print  (  maxSumPairWithDifferenceLessThanK  (  arr     N     K  ))   # This code is contributed by Smitha Dinesh Semwal   
C#
   // C# program to find maximum pair sum whose   // difference is less than K   using     System  ;   class     GFG     {          // method to return maximum sum we can get by      // finding less than K difference pair      static     int     maxSumPairWithDifferenceLessThanK  (  int     []  arr        int     N       int     K  )      {          // Sort input array in ascending order.      Array  .  Sort  (  arr  );          // dp[i] denotes the maximum disjoint pair sum      // we can achieve using first i elements      int     []  dp     =     new     int  [  N  ];          // if no element then dp value will be 0      dp  [  0  ]     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // first give previous value to dp[i] i.e.      // no pairing with (i-1)th element      dp  [  i  ]     =     dp  [  i  -  1  ];          // if current and previous element can form       // a pair      if     (  arr  [  i  ]     -     arr  [  i  -  1  ]      <     K  )      {          // update dp[i] by choosing maximum       // between pairing and not pairing      if     (  i     >=     2  )      dp  [  i  ]     =     Math  .  Max  (  dp  [  i  ]     dp  [  i  -  2  ]         +     arr  [  i  ]     +     arr  [  i  -  1  ]);      else      dp  [  i  ]     =     Math  .  Max  (  dp  [  i  ]     arr  [  i  ]      +     arr  [  i  -  1  ]);      }      }          // last index will have the result      return     dp  [  N     -     1  ];      }      // Driver code to test above methods      public     static     void     Main     ()     {          int     []  arr     =     {  3       5       10       15       17       12       9  };      int     N     =     arr  .  Length  ;      int     K     =     4  ;          Console  .  WriteLine  (         maxSumPairWithDifferenceLessThanK  (  arr       N       K  ));          }   }   // This code is contributed by anuj_67.   
PHP
      // Php program to find maximum pair sum whose    // difference is less than K    // method to return maximum sum we can get by    // finding less than K difference pair    function   maxSumPairWithDifferenceLessThanK  (  $arr     $N     $K  )   {   // Sort input array in ascending order.    sort  (  $arr  )   ;   // dp[i] denotes the maximum disjoint pair sum    // we can achieve using first i elements    $dp   =   array  ()   ;   // if no element then dp value will be 0    $dp  [  0  ]   =   0  ;   for   (  $i   =   1  ;   $i    <   $N  ;   $i  ++  )   {   // first give previous value to dp[i] i.e.    // no pairing with (i-1)th element    $dp  [  $i  ]   =   $dp  [  $i  -  1  ];   // if current and previous element can form a pair    if   (  $arr  [  $i  ]   -   $arr  [  $i  -  1  ]    <   $K  )   {   // update dp[i] by choosing maximum between    // pairing and not pairing    if   (  $i   >=   2  )   $dp  [  $i  ]   =   max  (  $dp  [  $i  ]   $dp  [  $i  -  2  ]   +   $arr  [  $i  ]   +   $arr  [  $i  -  1  ]);   else   $dp  [  $i  ]   =   max  (  $dp  [  $i  ]   $arr  [  $i  ]   +   $arr  [  $i  -  1  ]);   }   }   // last index will have the result    return   $dp  [  $N   -   1  ];   }   // Driver code    $arr   =   array  (  3     5     10     15     17     12     9  );   $N   =   sizeof  (  $arr  )   ;   $K   =   4  ;   echo   maxSumPairWithDifferenceLessThanK  (  $arr     $N     $K  );   // This code is contributed by Ryuga   ?>   
JavaScript
    <  script  >   // Javascript program to find maximum pair sum whose   // difference is less than K      // method to return maximum sum we can get by      // finding less than K difference pair      function     maxSumPairWithDifferenceLessThanK  (  arr        N       K  )      {          // Sort input array in ascending order.      arr  .  sort  ();          // dp[i] denotes the maximum disjoint pair sum      // we can achieve using first i elements      let     dp     =     [];          // if no element then dp value will be 0      dp  [  0  ]     =     0  ;          for     (  let     i     =     1  ;     i      <     N  ;     i  ++  )      {      // first give previous value to dp[i] i.e.      // no pairing with (i-1)th element      dp  [  i  ]     =     dp  [  i  -  1  ];          // if current and previous element can form a pair      if     (  arr  [  i  ]     -     arr  [  i  -  1  ]      <     K  )      {          // update dp[i] by choosing maximum between      // pairing and not pairing      if     (  i     >=     2  )      dp  [  i  ]     =     Math  .  max  (  dp  [  i  ]     dp  [  i  -  2  ]     +     arr  [  i  ]     +      arr  [  i  -  1  ]);      else      dp  [  i  ]     =     Math  .  max  (  dp  [  i  ]     arr  [  i  ]     +     arr  [  i  -  1  ]);      }      }          // last index will have the result      return     dp  [  N     -     1  ];      }   // Driver code to test above methods      let     arr     =     [  3       5       10       15       17       12       9  ];      let     N     =     arr  .  length  ;      let     K     =     4  ;          document  .  write  (     maxSumPairWithDifferenceLessThanK  (      arr       N       K  ));   // This code is contributed by avijitmondal1998.    <  /script>   

Produzione
62 

Complessità temporale: O(N Log N) 
Spazio ausiliario: O(N)

Di seguito è riportata una soluzione ottimizzata fornita da Amit Sane 

Attuazione:

C++
   // C++ program to find maximum pair sum whose   // difference is less than K   #include          using     namespace     std  ;   // Method to return maximum sum we can get by   // finding less than K difference pairs   int     maxSumPair  (  int     arr  []     int     N       int     k  )   {      int     maxSum     =     0  ;      // Sort elements to ensure every i and i-1 is closest      // possible pair      sort  (  arr       arr     +     N  );      // To get maximum possible sum       // iterate from largest to      // smallest giving larger       // numbers priority over smaller      // numbers.      for     (  int     i     =     N     -     1  ;     i     >     0  ;     --  i  )         {      // Case I: Diff of arr[i] and arr[i-1]      // is less than Kadd to maxSum       // Case II: Diff between arr[i] and arr[i-1] is not      // less than K move to next i since with      // sorting we know arr[i]-arr[i-1]  <      // rr[i]-arr[i-2] and so on.      if     (  arr  [  i  ]     -     arr  [  i     -     1  ]      <     k  )      {      // Assuming only positive numbers.      maxSum     +=     arr  [  i  ];      maxSum     +=     arr  [  i     -     1  ];      // When a match is found skip this pair      --  i  ;      }      }      return     maxSum  ;   }   // Driver code   int     main  ()   {      int     arr  []     =     {     3       5       10       15       17       12       9     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      int     K     =     4  ;      cout      < <     maxSumPair  (  arr       N       K  );      return     0  ;   }   
Java
   // Java program to find maximum pair sum whose   // difference is less than K   import     java.io.*  ;   import     java.util.*  ;   class   GFG     {      // Method to return maximum sum we can get by      // finding less than K difference pairs      static     int     maxSumPairWithDifferenceLessThanK  (  int     arr  []        int     N        int     k  )      {      int     maxSum     =     0  ;      // Sort elements to ensure every i and i-1 is      // closest possible pair      Arrays  .  sort  (  arr  );      // To get maximum possible sum       // iterate from largest      // to smallest giving larger       // numbers priority over      // smaller numbers.      for     (  int     i     =     N     -     1  ;     i     >     0  ;     --  i  )      {      // Case I: Diff of arr[i] and arr[i-1] is less      // than K add to maxSum      // Case II: Diff between arr[i] and arr[i-1] is      // not less than K move to next i       // since with sorting we know arr[i]-arr[i-1]  <      // arr[i]-arr[i-2] and so on.      if     (  arr  [  i  ]     -     arr  [  i     -     1  ]      <     k  )      {      // Assuming only positive numbers.      maxSum     +=     arr  [  i  ]  ;      maxSum     +=     arr  [  i     -     1  ]  ;      // When a match is found skip this pair      --  i  ;      }      }      return     maxSum  ;      }      // Driver code      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     3       5       10       15       17       12       9     };      int     N     =     arr  .  length  ;      int     K     =     4  ;      System  .  out  .  println  (      maxSumPairWithDifferenceLessThanK  (  arr       N       K  ));      }   }   // This code is contributed by vt_m.   
Python3
   # Python3 program to find maximum pair sum   # whose difference is less than K   # Method to return maximum sum we can   # get by finding less than K difference   # pairs   def   maxSumPairWithDifferenceLessThanK  (  arr     N     k  ):   maxSum   =   0   # Sort elements to ensure every i and   # i-1 is closest possible pair   arr  .  sort  ()   # To get maximum possible sum iterate   # from largest to smallest giving larger   # numbers priority over smaller numbers.   i   =   N   -   1   while   (  i   >   0  ):   # Case I: Diff of arr[i] and arr[i-1]   # is less than K add to maxSum   # Case II: Diff between arr[i] and   # arr[i-1] is not less than K   # move to next i since with sorting   # we know arr[i]-arr[i-1]  < arr[i]-arr[i-2]   # and so on.   if   (  arr  [  i  ]   -   arr  [  i   -   1  ]    <   k  ):   # Assuming only positive numbers.   maxSum   +=   arr  [  i  ]   maxSum   +=   arr  [  i   -   1  ]   # When a match is found skip this pair   i   -=   1   i   -=   1   return   maxSum   # Driver Code   arr   =   [  3     5     10     15     17     12     9  ]   N   =   len  (  arr  )   K   =   4   print  (  maxSumPairWithDifferenceLessThanK  (  arr     N     K  ))   # This code is contributed by mits   
C#
   // C# program to find maximum pair sum whose   // difference is less than K   using     System  ;   class     GFG     {          // Method to return maximum sum we can get by      // finding less than K difference pairs      static     int     maxSumPairWithDifferenceLessThanK  (  int     []  arr           int     N       int     k  )      {      int     maxSum     =     0  ;          // Sort elements to ensure      // every i and i-1 is closest      // possible pair      Array  .  Sort  (  arr  );          // To get maximum possible sum       // iterate from largest      // to smallest giving larger      // numbers priority over       // smaller numbers.      for     (  int     i     =     N  -  1  ;     i     >     0  ;     --  i  )      {          /* Case I: Diff of arr[i] and     arr[i-1] is less than K    add to maxSum     Case II: Diff between arr[i] and     arr[i-1] is not less    than K move to next i     since with sorting we    know arr[i]-arr[i-1]  <     arr[i]-arr[i-2] and    so on.*/      if     (  arr  [  i  ]     -     arr  [  i  -  1  ]      <     k  )      {          // Assuming only positive numbers.      maxSum     +=     arr  [  i  ];      maxSum     +=     arr  [  i     -     1  ];          // When a match is found       // skip this pair      --  i  ;      }      }          return     maxSum  ;      }      // Driver Code      public     static     void     Main     ()         {      int     []  arr     =     {  3       5       10       15       17       12       9  };      int     N     =     arr  .  Length  ;      int     K     =     4  ;          Console  .  Write  (     maxSumPairWithDifferenceLessThanK  (  arr           N       K  ));      }   }   // This code is contributed by nitin mittal.   
PHP
      // PHP program to find maximum pair sum    // whose difference is less than K    // Method to return maximum sum we can    // get by finding less than K difference   // pairs    function   maxSumPairWithDifferenceLessThanK  (  $arr     $N     $k  )   {   $maxSum   =   0  ;   // Sort elements to ensure every i and    // i-1 is closest possible pair    sort  (  $arr  );   // To get maximum possible sum iterate    // from largest to smallest giving larger   // numbers priority over smaller numbers.    for   (  $i   =   $N   -   1  ;   $i   >   0  ;   --  $i  )   {   // Case I: Diff of arr[i] and arr[i-1]    // is less than K add to maxSum    // Case II: Diff between arr[i] and    // arr[i-1] is not less than K    // move to next i since with sorting    // we know arr[i]-arr[i-1]  < arr[i]-arr[i-2]    // and so on.    if   (  $arr  [  $i  ]   -   $arr  [  $i   -   1  ]    <   $k  )   {   // Assuming only positive numbers.    $maxSum   +=   $arr  [  $i  ];   $maxSum   +=   $arr  [  $i   -   1  ];   // When a match is found skip this pair    --  $i  ;   }   }   return   $maxSum  ;   }   // Driver Code   $arr   =   array  (  3     5     10     15     17     12     9  );   $N   =   sizeof  (  $arr  );   $K   =   4  ;   echo   maxSumPairWithDifferenceLessThanK  (  $arr     $N     $K  );   // This code is contributed    // by Sach_Code    ?>   
JavaScript
    <  script  >   // Javascript program to find   // maximum pair sum whose   // difference is less than K   // Method to return maximum sum we can get by   // finding less than K difference pairs   function     maxSumPairWithDifferenceLessThanK  (  arr       N       k  )   {      var     maxSum     =     0  ;      // Sort elements to ensure every i and i-1 is      // closest possible pair      arr  .  sort  ((  a    b  )=>  a  -  b  );      // To get maximum possible sum       // iterate from largest      // to smallest giving larger       // numbers priority over      // smaller numbers.      for     (  i     =     N     -     1  ;     i     >     0  ;     --  i  )      {      // Case I: Diff of arr[i] and arr[i-1] is less      // than K add to maxSum      // Case II: Diff between arr[i] and arr[i-1] is      // not less than K move to next i       // since with sorting we know arr[i]-arr[i-1]  <      // arr[i]-arr[i-2] and so on.      if     (  arr  [  i  ]     -     arr  [  i     -     1  ]      <     k  )      {      // Assuming only positive numbers.      maxSum     +=     arr  [  i  ];      maxSum     +=     arr  [  i     -     1  ];      // When a match is found skip this pair      --  i  ;      }      }      return     maxSum  ;   }   // Driver code   var     arr     =     [     3       5       10       15       17       12       9     ];   var     N     =     arr  .  length  ;   var     K     =     4  ;   document  .  write  (  maxSumPairWithDifferenceLessThanK  (  arr       N       K  ));   // This code is contributed by 29AjayKumar     <  /script>   

Produzione
62 

Complessità temporale: O(N Log N) 
Spazio ausiliario: O(1)