Prodotto più grande di un sottoarray di dimensione k

Prodotto più grande di un sottoarray di dimensione k
Provalo su GfG Practice #practiceLinkDiv { display: none! importante; }

Dato un array composto da n interi positivi e un intero k. Trova il sottoarray prodotto più grande di dimensione k, ovvero trova il massimo prodotto di k elementi contigui nell'array dove k <= n.
Esempi:  

    Input:     arr[] = {1 5 9 8 2 4   
1 8 1 2}
k = 6
Output: 4608
The subarray is {9 8 2 4 1 8}
Input: arr[] = {1 5 9 8 2 4 1 8 1 2}
k = 4
Output: 720
The subarray is {5 9 8 2}
Input: arr[] = {2 5 8 1 1 3};
k = 3
Output: 80
The subarray is {2 5 8} Recommended Practice Prodotto più grande Provalo!

Approccio della forza bruta:

Iteriamo su tutti i sottoarray di dimensione k utilizzando due cicli nidificati. Il ciclo esterno va da 0 a n-k e il ciclo interno va da i a i+k-1. Calcoliamo il prodotto di ciascun sottoarray e aggiorniamo il prodotto massimo trovato finora. Infine restituiamo il prodotto massimo.

Ecco i passaggi per l'approccio sopra descritto:

  1. Inizializza una variabile maxProduct su INT_MIN che rappresenta il valore intero più piccolo possibile.
  2. Itera su tutti i sottoarray di dimensione k utilizzando due cicli nidificati.
  3. Il ciclo esterno va da 0 a n-k.
  4. Il ciclo interno va da i a i+k-1 dove i è l'indice iniziale del sottoarray.
  5. Calcola il prodotto del sottoarray corrente utilizzando il ciclo interno.
  6. Se il prodotto è maggiore di maxProduct, aggiorna maxProduct al prodotto corrente.
  7. Restituisce maxProduct come risultato.

Di seguito è riportato il codice dell'approccio precedente:

C++
   // C++ program to find the maximum product of a subarray   // of size k.   #include          using     namespace     std  ;   // This function returns maximum product of a subarray   // of size k in given array arr[0..n-1]. This function   // assumes that k is smaller than or equal to n.   int     findMaxProduct  (  int     arr  []     int     n       int     k  )   {      int     maxProduct     =     INT_MIN  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ];      }      maxProduct     =     max  (  maxProduct       product  );      }      return     maxProduct  ;   }   // Driver code   int     main  ()   {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     sizeof  (  arr1  )  /  sizeof  (  arr1  [  0  ]);      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      k     =     4  ;      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     sizeof  (  arr2  )  /  sizeof  (  arr2  [  0  ]);      cout      < <     findMaxProduct  (  arr2       n       k  );      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // This function returns the maximum product of a subarray of size k in the given array      // It assumes that k is smaller than or equal to the length of the array.      static     int     findMaxProduct  (  int  []     arr       int     n       int     k  )     {      int     maxProduct     =     Integer  .  MIN_VALUE  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ]  ;      }      maxProduct     =     Math  .  max  (  maxProduct       product  );      }      return     maxProduct  ;      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  []     arr1     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));      k     =     4  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));      int  []     arr2     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr2       n       k  ));      }   }   
Python3
   # Python Code   def   find_max_product  (  arr     k  ):   max_product   =   float  (  '-inf'  )   # Initialize max_product to negative infinity   n   =   len  (  arr  )   # Get the length of the input array   # Iterate through the array with a window of size k   for   i   in   range  (  n   -   k   +   1  ):   product   =   1   # Initialize product to 1 for each subarray   for   j   in   range  (  i     i   +   k  ):   product   *=   arr  [  j  ]   # Calculate the product of the subarray   max_product   =   max  (  max_product     product  )   # Update max_product if necessary   return   max_product   # Return the maximum product of a subarray of size k   # Driver code   if   __name__   ==   '__main__'  :   arr1   =   [  1     5     9     8     2     4     1     8     1     2  ]   k   =   6   print  (  find_max_product  (  arr1     k  ))   # Output 25920   k   =   4   print  (  find_max_product  (  arr1     k  ))   # Output 1728   arr2   =   [  2     5     8     1     1     3  ]   k   =   3   print  (  find_max_product  (  arr2     k  ))   # Output 80   # This code is contributed by guptapratik   
C#
   using     System  ;   public     class     GFG   {      // This function returns the maximum product of a subarray of size k in the given array      // It assumes that k is smaller than or equal to the length of the array.      static     int     FindMaxProduct  (  int  []     arr       int     n       int     k  )      {      int     maxProduct     =     int  .  MinValue  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )      {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )      {      product     *=     arr  [  j  ];      }      maxProduct     =     Math  .  Max  (  maxProduct       product  );      }      return     maxProduct  ;      }      // Driver code      public     static     void     Main  (  string  []     args  )      {      int  []     arr1     =     {     1       5       9       8       2       4       1       8       1       2     };      int     k     =     6  ;      int     n     =     arr1  .  Length  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr1       n       k  ));      k     =     4  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr1       n       k  ));      int  []     arr2     =     {     2       5       8       1       1       3     };      k     =     3  ;      n     =     arr2  .  Length  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr2       n       k  ));      }   }   
JavaScript
   // This function returns the maximum product of a subarray of size k in the given array   // It assumes that k is smaller than or equal to the length of the array.   function     findMaxProduct  (  arr       k  )     {      let     maxProduct     =     Number  .  MIN_VALUE  ;      const     n     =     arr  .  length  ;      for     (  let     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      let     product     =     1  ;      for     (  let     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ];      }      maxProduct     =     Math  .  max  (  maxProduct       product  );      }      return     maxProduct  ;   }   // Driver code   const     arr1     =     [  1       5       9       8       2       4       1       8       1       2  ];   let     k     =     6  ;   console  .  log  (  findMaxProduct  (  arr1       k  ));   k     =     4  ;   console  .  log  (  findMaxProduct  (  arr1       k  ));   const     arr2     =     [  2       5       8       1       1       3  ];   k     =     3  ;   console  .  log  (  findMaxProduct  (  arr2       k  ));   

Produzione
4608 720 80 

Complessità temporale:
Spazio ausiliario: O(1) perché stiamo utilizzando solo una quantità costante di spazio aggiuntivo per memorizzare il prodotto massimo e il prodotto del sottoarray corrente.

Metodo 2 (Efficace: O(n))  
Possiamo risolverlo in O(n) sfruttando il fatto che il prodotto di un sottoarray di dimensione k può essere calcolato in tempo O(1) se abbiamo a disposizione il prodotto del sottoarray precedente. 
 

 curr_product = (prev_product / arr[i-1]) * arr[i + k -1]   
prev_product : Product of subarray of size k beginning
with arr[i-1]
curr_product : Product of subarray of size k beginning
with arr[i]


In questo modo possiamo calcolare il prodotto di sottoarray di dimensione k massima in un solo attraversamento. Di seguito è riportata l'implementazione C++ dell'idea.

C++
   // C++ program to find the maximum product of a subarray   // of size k.   #include          using     namespace     std  ;   // This function returns maximum product of a subarray   // of size k in given array arr[0..n-1]. This function   // assumes that k is smaller than or equal to n.   int     findMaxProduct  (  int     arr  []     int     n       int     k  )   {      // Initialize the MaxProduct to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i  =  0  ;     i   <  k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];      int     prev_product     =     MaxProduct  ;      // Consider every product beginning with arr[i]      // where i varies from 1 to n-k-1      for     (  int     i  =  1  ;     i   <=  n  -  k  ;     i  ++  )      {      int     curr_product     =     (  prev_product  /  arr  [  i  -1  ])     *      arr  [  i  +  k  -1  ];      MaxProduct     =     max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }      // Return the maximum product found      return     MaxProduct  ;   }   // Driver code   int     main  ()   {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     sizeof  (  arr1  )  /  sizeof  (  arr1  [  0  ]);      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      k     =     4  ;      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     sizeof  (  arr2  )  /  sizeof  (  arr2  [  0  ]);      cout      < <     findMaxProduct  (  arr2       n       k  );      return     0  ;   }   
Java
   // Java program to find the maximum product of a subarray   // of size k   import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      // Function returns maximum product of a subarray      // of size k in given array arr[0..n-1]. This function      // assumes that k is smaller than or equal to n.      static     int     findMaxProduct  (  int     arr  []       int     n       int     k  )      {      // Initialize the MaxProduct to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i  =  0  ;     i   <  k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ]  ;          int     prev_product     =     MaxProduct  ;          // Consider every product beginning with arr[i]      // where i varies from 1 to n-k-1      for     (  int     i  =  1  ;     i   <=  n  -  k  ;     i  ++  )      {      int     curr_product     =     (  prev_product  /  arr  [  i  -  1  ]  )     *      arr  [  i  +  k  -  1  ]  ;      MaxProduct     =     Math  .  max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }          // Return the maximum product found      return     MaxProduct  ;      }          // driver program      public     static     void     main     (  String  []     args  )         {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));          k     =     4  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));          int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr2       n       k  ));      }   }   // This code is contributed by Pramod Kumar   
Python3
   # Python 3 program to find the maximum    # product of a subarray of size k.   # This function returns maximum product    # of a subarray of size k in given array   # arr[0..n-1]. This function assumes    # that k is smaller than or equal to n.   def   findMaxProduct  (  arr     n     k  )   :   # Initialize the MaxProduct to 1    # as all elements in the array    # are positive   MaxProduct   =   1   for   i   in   range  (  0     k  )   :   MaxProduct   =   MaxProduct   *   arr  [  i  ]   prev_product   =   MaxProduct   # Consider every product beginning   # with arr[i] where i varies from   # 1 to n-k-1   for   i   in   range  (  1     n   -   k   +   1  )   :   curr_product   =   (  prev_product   //   arr  [  i  -  1  ])   *   arr  [  i  +  k  -  1  ]   MaxProduct   =   max  (  MaxProduct     curr_product  )   prev_product   =   curr_product   # Return the maximum product found   return   MaxProduct   # Driver code   arr1   =   [  1     5     9     8     2     4     1     8     1     2  ]   k   =   6   n   =   len  (  arr1  )   print   (  findMaxProduct  (  arr1     n     k  )   )   k   =   4   print   (  findMaxProduct  (  arr1     n     k  ))   arr2   =   [  2     5     8     1     1     3  ]   k   =   3   n   =   len  (  arr2  )   print  (  findMaxProduct  (  arr2     n     k  ))   # This code is contributed by Nikita Tiwari.   
C#
   // C# program to find the maximum    // product of a subarray of size k   using     System  ;   class     GFG      {      // Function returns maximum       // product of a subarray of       // size k in given array       // arr[0..n-1]. This function       // assumes that k is smaller       // than or equal to n.      static     int     findMaxProduct  (  int     []  arr           int     n       int     k  )      {      // Initialize the MaxProduct       // to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];      int     prev_product     =     MaxProduct  ;      // Consider every product beginning       // with arr[i] where i varies from       // 1 to n-k-1      for     (  int     i     =     1  ;     i      <=     n     -     k  ;     i  ++  )      {      int     curr_product     =     (  prev_product     /         arr  [  i     -     1  ])     *         arr  [  i     +     k     -     1  ];      MaxProduct     =     Math  .  Max  (  MaxProduct           curr_product  );      prev_product     =     curr_product  ;      }      // Return the maximum      // product found      return     MaxProduct  ;      }          // Driver Code      public     static     void     Main     ()         {      int     []  arr1     =     {  1       5       9       8       2           4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  Length  ;      Console  .  WriteLine  (  findMaxProduct  (  arr1       n       k  ));      k     =     4  ;      Console  .  WriteLine  (  findMaxProduct  (  arr1       n       k  ));      int     []  arr2     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  Length  ;      Console  .  WriteLine  (  findMaxProduct  (  arr2       n       k  ));      }   }   // This code is contributed by anuj_67.   
JavaScript
    <  script  >      // JavaScript program to find the maximum       // product of a subarray of size k          // Function returns maximum       // product of a subarray of       // size k in given array       // arr[0..n-1]. This function       // assumes that k is smaller       // than or equal to n.      function     findMaxProduct  (  arr       n       k  )      {      // Initialize the MaxProduct       // to 1 as all elements      // in the array are positive      let     MaxProduct     =     1  ;      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];          let     prev_product     =     MaxProduct  ;          // Consider every product beginning       // with arr[i] where i varies from       // 1 to n-k-1      for     (  let     i     =     1  ;     i      <=     n     -     k  ;     i  ++  )      {      let     curr_product     =         (  prev_product     /     arr  [  i     -     1  ])     *     arr  [  i     +     k     -     1  ];      MaxProduct     =     Math  .  max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }          // Return the maximum      // product found      return     MaxProduct  ;      }          let     arr1     =     [  1       5       9       8       2       4       1       8       1       2  ];      let     k     =     6  ;      let     n     =     arr1  .  length  ;      document  .  write  (  findMaxProduct  (  arr1       n       k  )     +     ' 
'
); k = 4 ; document . write ( findMaxProduct ( arr1 n k ) + '
'
); let arr2 = [ 2 5 8 1 1 3 ]; k = 3 ; n = arr2 . length ; document . write ( findMaxProduct ( arr2 n k ) + '
'
); < /script>
PHP
      // PHP program to find the maximum    // product of a subarray of size k.   // This function returns maximum    // product of a subarray of size    // k in given array arr[0..n-1].   // This function assumes that k    // is smaller than or equal to n.   function   findMaxProduct  (   $arr     $n     $k  )   {   // Initialize the MaxProduct to   // 1 as all elements   // in the array are positive   $MaxProduct   =   1  ;   for  (  $i   =   0  ;   $i    <   $k  ;   $i  ++  )   $MaxProduct   *=   $arr  [  $i  ];   $prev_product   =   $MaxProduct  ;   // Consider every product   // beginning with arr[i]   // where i varies from 1    // to n-k-1   for  (  $i   =   1  ;   $i    <   $n   -   $k  ;   $i  ++  )   {   $curr_product   =   (  $prev_product   /   $arr  [  $i   -   1  ])   *   $arr  [  $i   +   $k   -   1  ];   $MaxProduct   =   max  (  $MaxProduct     $curr_product  );   $prev_product   =   $curr_product  ;   }   // Return the maximum   // product found   return   $MaxProduct  ;   }   // Driver code   $arr1   =   array  (  1     5     9     8     2     4     1     8     1     2  );   $k   =   6  ;   $n   =   count  (  $arr1  );   echo   findMaxProduct  (  $arr1     $n     $k  )  '  n  '   ;   $k   =   4  ;   echo   findMaxProduct  (  $arr1     $n     $k  )  '  n  '  ;   $arr2   =   array  (  2     5     8     1     1     3  );   $k   =   3  ;   $n   =   count  (  $arr2  );   echo   findMaxProduct  (  $arr2     $n     $k  );   // This code is contributed by anuj_67.   ?>   

Produzione
4608 720 80 

Spazio ausiliario: O(1) poiché non viene utilizzato spazio aggiuntivo.
Questo articolo è stato fornito da Ashutosh Kumar .