Kombinatorikus játékelmélet | 4. készlet (Sprague - Grundy tétel)

Kombinatorikus játékelmélet | 4. készlet (Sprague - Grundy tétel)

Előfeltételek: Grundy számok/számok és MEX
Már láthattuk a 2. szettben (https://www.geeksforgeeks.org/dsa/combinatorial-gameory-et-et-2-game-nim/), hogy megtalálhatjuk, ki nyeri a NIM játékát anélkül, hogy ténylegesen játékot játszana.
Tegyük fel, hogy egy kicsit megváltoztatjuk a klasszikus NIM játékot. Ezúttal minden játékos csak 1 2 vagy 3 köveket távolíthat el (és nem olyan számú kövt, mint a NIM klasszikus játékában). Megjósolhatjuk, ki nyer?
Igen, a Sprague-Grundy tétel segítségével megjósolhatjuk a győztest.

Mi a Sprague-Grundy tétel?  
Tegyük fel, hogy van egy összetett játék (egynél több aljáték), amely N aljátékból és két A és B játékosból áll, majd a Sprague-Grundy tétel azt mondja, hogy ha mind a, mind B optimálisan játsszon (azaz nem hibáznak), akkor a játékos első induló játékosa garantált, ha a játék elején az egyes alsó részekben az egyes alsó részek száma nem-Zero. Ellenkező esetben, ha az XOR nullára értékeli, akkor az A játékos határozottan elveszik.

Hogyan lehet alkalmazni a Sprague Grundy tételét?  
Alkalmazhatjuk a sprague-grundy tételt bármelyikben pártatlan játék és oldja meg. Az alapvető lépéseket a következőképpen kell felsorolni: 

  1. Törje be a kompozit játékot aljátékokra.
  2. Ezután minden aljátékhoz számolja ki a Grundy számot abban a helyzetben.
  3. Ezután számolja ki az összes kiszámított Grundy szám XOR -ját.
  4. Ha az XOR-érték nem nulla, akkor az a játékos, aki a fordulatot (első játékos) fogja elérni, megnyeri másként, hogy elveszítse, bármi is legyen.

Példa játék: A játék 3 4 és 5 kövvel rendelkező 3 cölöpökkel kezdődik, és a lejátszónak bármilyen pozitív számú kövt vehet fel, csak 3 -ig a cölöpök bármelyikétől [feltéve, hogy a halomnak annyi köve van]. Az utolsó játékos, aki mozog, nyer. Melyik játékos nyeri a játékot, feltételezve, hogy mindkét játékos optimálisan játszik?

Hogyan lehet megmondani, ki nyer a Sprague-Grundy tétel alkalmazásával?  
Mint láthatjuk, hogy ez a játék önmagában több aljátékból áll. 
Első lépés: Az aljátékok minden cölöpnek tekinthetők. 
Második lépés: Az alábbi táblázatból látjuk, hogy 

Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1  

Sprague - Grundy tétel

Már láttuk, hogyan lehet kiszámítani ennek a játéknak a Grundy számát a előző cikk.
Harmadik lépés: A XOR 3 0 1 = 2
Negyedik lépés: Mivel az XOR nem nulla szám, tehát elmondhatjuk, hogy az első játékos nyer.

Az alábbiakban bemutatjuk a 4 lépés feletti programot. 

C++
   /* Game Description-    'A game is played between two players and there are N piles    of stones such that each pile has certain number of stones.    On his/her turn a player selects a pile and can take any    non-zero number of stones upto 3 (i.e- 123)    The player who cannot move is considered to lose the game    (i.e. one who take the last stone is the winner).    Can you find which player wins the game if both players play    optimally (they don't make any mistake)? '    A Dynamic Programming approach to calculate Grundy Number    and Mex and find the Winner using Sprague - Grundy Theorem. */   #include       using     namespace     std  ;   /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.    n -> Number of piles    Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game    The piles[] and Grundy[] are having 0-based indexing*/   #define PLAYER1 1   #define PLAYER2 2   // A Function to calculate Mex of all the values in that set   int     calculateMex  (  unordered_set   <  int  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  find  (  Mex  )     !=     Set  .  end  ())      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   int     calculateGrundy  (  int     n       int     Grundy  [])   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -1  )      return     (  Grundy  [  n  ]);      unordered_set   <  int  >     Set  ;     // A Hash Table      for     (  int     i  =  1  ;     i   <=  3  ;     i  ++  )      Set  .  insert     (  calculateGrundy     (  n  -  i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   void     declareWinner  (  int     whoseTurn       int     piles  []      int     Grundy  []     int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]];      for     (  int     i  =  1  ;     i   <=  n  -1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      printf  (  'Player 1 will win  n  '  );      else      printf  (  'Player 2 will win  n  '  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      printf  (  'Player 2 will win  n  '  );      else      printf  (  'Player 1 will win  n  '  );      }      return  ;   }   // Driver program to test above functions   int     main  ()   {      // Test Case 1      int     piles  []     =     {  3       4       5  };      int     n     =     sizeof  (  piles  )  /  sizeof  (  piles  [  0  ]);      // Find the maximum element      int     maximum     =     *  max_element  (  piles       piles     +     n  );      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     Grundy  [  maximum     +     1  ];      memset  (  Grundy       -1       sizeof     (  Grundy  ));      // Calculate Grundy Value of piles[i] and store it      for     (  int     i  =  0  ;     i   <=  n  -1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]     Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );      /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      return     (  0  );   }   
Java
   import     java.util.*  ;   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   class   GFG     {       /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/   static     int     PLAYER1     =     1  ;   static     int     PLAYER2     =     2  ;   // A Function to calculate Mex of all the values in that set   static     int     calculateMex  (  HashSet   <  Integer  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  contains  (  Mex  ))      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   static     int     calculateGrundy  (  int     n       int     Grundy  []  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]  );      // A Hash Table      HashSet   <  Integer  >     Set     =     new     HashSet   <  Integer  >  ();         for     (  int     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  add  (  calculateGrundy     (  n     -     i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]  );   }   // A function to declare the winner of the game   static     void     declareWinner  (  int     whoseTurn       int     piles  []        int     Grundy  []       int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]]  ;      for     (  int     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]]  ;      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      System  .  out  .  printf  (  'Player 1 will winn'  );      else      System  .  out  .  printf  (  'Player 2 will winn'  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      System  .  out  .  printf  (  'Player 2 will winn'  );      else      System  .  out  .  printf  (  'Player 1 will winn'  );      }      return  ;   }   // Driver code   public     static     void     main  (  String  []     args  )      {          // Test Case 1      int     piles  []     =     {  3       4       5  };      int     n     =     piles  .  length  ;      // Find the maximum element      int     maximum     =     Arrays  .  stream  (  piles  ).  max  ().  getAsInt  ();      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     Grundy  []     =     new     int  [  maximum     +     1  ]  ;      Arrays  .  fill  (  Grundy       -  1  );      // Calculate Grundy Value of piles[i] and store it      for     (  int     i     =     0  ;     i      <=     n     -     1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]       Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );      /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      }   }      // This code is contributed by PrinciRaj1992   
Python3
   ''' Game Description-     'A game is played between two players and there are N piles     of stones such that each pile has certain number of stones.     On his/her turn a player selects a pile and can take any     non-zero number of stones upto 3 (i.e- 123)     The player who cannot move is considered to lose the game     (i.e. one who take the last stone is the winner).     Can you find which player wins the game if both players play     optimally (they don't make any mistake)? '         A Dynamic Programming approach to calculate Grundy Number     and Mex and find the Winner using Sprague - Grundy Theorem.        piles[] -> Array having the initial count of stones/coins     in each piles before the game has started.     n -> Number of piles         Grundy[] -> Array having the Grundy Number corresponding to     the initial position of each piles in the game         The piles[] and Grundy[] are having 0-based indexing'''   PLAYER1   =   1   PLAYER2   =   2   # A Function to calculate Mex of all   # the values in that set    def   calculateMex  (  Set  ):   Mex   =   0  ;   while   (  Mex   in   Set  ):   Mex   +=   1   return   (  Mex  )   # A function to Compute Grundy Number of 'n'    def   calculateGrundy  (  n     Grundy  ):   Grundy  [  0  ]   =   0   Grundy  [  1  ]   =   1   Grundy  [  2  ]   =   2   Grundy  [  3  ]   =   3   if   (  Grundy  [  n  ]   !=   -  1  ):   return   (  Grundy  [  n  ])   # A Hash Table    Set   =   set  ()   for   i   in   range  (  1     4  ):   Set  .  add  (  calculateGrundy  (  n   -   i     Grundy  ))   # Store the result    Grundy  [  n  ]   =   calculateMex  (  Set  )   return   (  Grundy  [  n  ])   # A function to declare the winner of the game    def   declareWinner  (  whoseTurn     piles     Grundy     n  ):   xorValue   =   Grundy  [  piles  [  0  ]];   for   i   in   range  (  1     n  ):   xorValue   =   (  xorValue   ^   Grundy  [  piles  [  i  ]])   if   (  xorValue   !=   0  ):   if   (  whoseTurn   ==   PLAYER1  ):   print  (  'Player 1 will win  n  '  );   else  :   print  (  'Player 2 will win  n  '  );   else  :   if   (  whoseTurn   ==   PLAYER1  ):   print  (  'Player 2 will win  n  '  );   else  :   print  (  'Player 1 will win  n  '  );   # Driver code   if   __name__  ==  '__main__'  :   # Test Case 1    piles   =   [   3     4     5   ]   n   =   len  (  piles  )   # Find the maximum element    maximum   =   max  (  piles  )   # An array to cache the sub-problems so that    # re-computation of same sub-problems is avoided    Grundy   =   [  -  1   for   i   in   range  (  maximum   +   1  )];   # Calculate Grundy Value of piles[i] and store it    for   i   in   range  (  n  ):   calculateGrundy  (  piles  [  i  ]   Grundy  );   declareWinner  (  PLAYER1     piles     Grundy     n  );          ''' Test Case 2     int piles[] = {3 8 2};     int n = sizeof(piles)/sizeof(piles[0]);             int maximum = *max_element (piles piles + n);         // An array to cache the sub-problems so that     // re-computation of same sub-problems is avoided     int Grundy [maximum + 1];     memset(Grundy -1 sizeof (Grundy));         // Calculate Grundy Value of piles[i] and store it     for (int i=0; i <=n-1; i++)     calculateGrundy(piles[i] Grundy);         declareWinner(PLAYER2 piles Grundy n); '''   # This code is contributed by rutvik_56   
C#
   using     System  ;   using     System.Linq  ;   using     System.Collections.Generic  ;   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   class     GFG      {       /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/   static     int     PLAYER1     =     1  ;   //static int PLAYER2 = 2;   // A Function to calculate Mex of all the values in that set   static     int     calculateMex  (  HashSet   <  int  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  Contains  (  Mex  ))      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   static     int     calculateGrundy  (  int     n       int     []  Grundy  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]);      // A Hash Table      HashSet   <  int  >     Set     =     new     HashSet   <  int  >  ();         for     (  int     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  Add  (  calculateGrundy     (  n     -     i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   static     void     declareWinner  (  int     whoseTurn       int     []  piles        int     []  Grundy       int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]];      for     (  int     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      Console  .  Write  (  'Player 1 will winn'  );      else      Console  .  Write  (  'Player 2 will winn'  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      Console  .  Write  (  'Player 2 will winn'  );      else      Console  .  Write  (  'Player 1 will winn'  );      }      return  ;   }   // Driver code   static     void     Main  ()      {          // Test Case 1      int     []  piles     =     {  3       4       5  };      int     n     =     piles  .  Length  ;      // Find the maximum element      int     maximum     =     piles  .  Max  ();      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     []  Grundy     =     new     int  [  maximum     +     1  ];      Array  .  Fill  (  Grundy       -  1  );      // Calculate Grundy Value of piles[i] and store it      for     (  int     i     =     0  ;     i      <=     n     -     1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]     Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );          /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      }   }      // This code is contributed by mits   
JavaScript
    <  script  >   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '       A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles       Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game       The piles[] and Grundy[] are having 0-based indexing*/   let     PLAYER1     =     1  ;   let     PLAYER2     =     2  ;   // A Function to calculate Mex of all the values in that set   function     calculateMex  (  Set  )   {      let     Mex     =     0  ;          while     (  Set  .  has  (  Mex  ))      Mex  ++  ;          return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   function     calculateGrundy  (  n    Grundy  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;          if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]);          // A Hash Table      let     Set     =     new     Set  ();          for     (  let     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  add  (  calculateGrundy     (  n     -     i       Grundy  ));          // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );          return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   function     declareWinner  (  whoseTurn    piles    Grundy    n  )   {      let     xorValue     =     Grundy  [  piles  [  0  ]];          for     (  let     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];          if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      document  .  write  (  'Player 1 will win  
'
); else document . write ( 'Player 2 will win
'
); } else { if ( whoseTurn == PLAYER1 ) document . write ( 'Player 2 will win
'
); else document . write ( 'Player 1 will win
'
); } return ; } // Driver code // Test Case 1 let piles = [ 3 4 5 ]; let n = piles . length ; // Find the maximum element let maximum = Math . max (... piles ) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array ( maximum + 1 ); for ( let i = 0 ; i < maximum + 1 ; i ++ ) Grundy [ i ] = 0 ; // Calculate Grundy Value of piles[i] and store it for ( let i = 0 ; i <= n - 1 ; i ++ ) calculateGrundy ( piles [ i ] Grundy ); declareWinner ( PLAYER1 piles Grundy n ); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i <=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 < /script>

Kimenet:  

Player 1 will win 

Idő bonyolultsága: O (n^2), ahol n a halomban lévő kövek maximális száma. 

Tér komplexitása: O (n) Mivel a Grundy tömböt használják az alproblémák eredményeinek tárolására, hogy elkerüljék a redundáns számításokat, és o (n) helyet igényel.

Hivatkozások:  
https://en.wikipedia.org/wiki/sprague%e2%80%93grundy_theorem

Gyakorlat az olvasóknak: Fontolja meg az alábbi játékot. 
Egy játékot két játékos játszik, n egész számú A1 a2 .. an. Az ő fordulóján egy játékos kiválasztja az egész számot, amely elválasztja azt 2 3 vagy 6 -mal, majd felveszi a padlót. Ha az egész szám 0 lesz, akkor eltávolítják. Az utolsó játékos, aki mozog, nyer. Melyik játékos nyeri a játékot, ha mindkét játékos optimálisan játszik?
Tipp: Lásd a 3. példát előző cikk.