Kaikkien osajoukkojen keskiarvon summa

Kaikkien osajoukkojen keskiarvon summa
Kokeile GfG Practicessa #practiceLinkDiv { näyttö: ei mitään !tärkeää; }

Kun annetaan N kokonaislukuelementin taulukko arr[], tehtävänä on löytää tämän taulukon kaikkien osajoukkojen keskiarvon summa.

Esimerkki:   

 Input : arr[] = [2 3 5]   
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33 Recommended Practice Kaikkien osajoukkojen keskiarvon summa Kokeile sitä!

Naivi lähestymistapa: Naiivi ratkaisu on iteroida läpi kaikki mahdolliset osajoukot saada an keskimäärin kaikista niistä ja lisää ne sitten yksitellen, mutta tämä vie eksponentiaalisesti aikaa ja on mahdotonta isommille taulukoille. 
Voimme saada mallin ottamalla esimerkin  

 arr = [a0 a1 a2 a3]   
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Kerroin osoittajilla voidaan selittää seuraavasti, oletetaan, että iteroitamme osajoukkoja, joissa on K elementtiä, jolloin nimittäjä on K ja osoittaja on r*S, missä 'r' tarkoittaa, kuinka monta kertaa tietty taulukkoelementti lisätään, kun iteroidaan samankokoisten osajoukkojen yli. Tarkastelemalla voimme nähdä, että r tulee olemaan nCr(N - 1 n - 1), koska yhden elementin summauksen jälkeen meidän on valittava (n - 1) elementtiä (N - 1) alkioista, jotta jokaisen elementin taajuus on nCr(N - 1 n - 1) samalla kun otetaan huomioon samankokoiset osajoukot, koska kaikki alkiot osallistuvat, ja tämä summauskertojen määrä on yhtä suuri. ilmaisua. 

Alla olevassa koodissa nCr on toteutettu dynaamisella ohjelmointimenetelmällä voit lukea siitä lisää täältä 

C++
   // C++ program to get sum of average of all subsets   #include          using     namespace     std  ;   // Returns value of Binomial Coefficient C(n k)   int     nCr  (  int     n       int     k  )   {      int     C  [  n     +     1  ][  k     +     1  ];      int     i       j  ;      // Calculate value of Binomial Coefficient in bottom      // up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using previously stored      // values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];   }   // method returns sum of average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;     // Initialize result      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   // java program to get sum of   // average of all subsets   import     java.io.*  ;   class   GFG     {      // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int     C  [][]     =     new     int  [  n     +     1  ][  k     +     1  ]  ;      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ]  ;      }      }      return     C  [  n  ][  k  ]  ;      }      // method returns sum of average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     2       3       5       7     };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by vt_m   
C#
   // C# program to get sum of   // average of all subsets   using     System  ;   class     GFG     {          // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int  [     ]     C     =     new     int  [  n     +     1       k     +     1  ];      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  Min  (  i       k  );     j  ++  )         {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i       j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i       j  ]     =     C  [  i     -     1       j     -     1  ]     +     C  [  i     -     1       j  ];      }      }      return     C  [  n       k  ];      }      // method returns sum of average       // of all subsets      static     double     resultOfAllSubsets  (  int  []     arr       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset       // of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by Sam007   
JavaScript
    <  script  >      // javascript program to get sum of      // average of all subsets          // Returns value of Binomial      // Coefficient C(n k)      function     nCr  (  n       k  )      {      let     C     =     new     Array  (  n     +     1  );      for     (  let     i     =     0  ;     i      <=     n  ;     i  ++  )         {      C  [  i  ]     =     new     Array  (  k     +     1  );      for     (  let     j     =     0  ;     j      <=     k  ;     j  ++  )         {      C  [  i  ][  j  ]     =     0  ;      }      }      let     i       j  ;          // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;          // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];      }          // method returns sum of average of all subsets      function     resultOfAllSubsets  (  arr       N  )      {      // Initialize result      let     result     =     0.0  ;          // Find sum of elements      let     sum     =     0  ;      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];          // looping once for all subset of same size      for     (  let     n     =     1  ;     n      <=     N  ;     n  ++  )          /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;          return     result  ;      }          let     arr     =     [     2       3       5       7     ];      let     N     =     arr  .  length  ;      document  .  write  (  resultOfAllSubsets  (  arr       N  ));        <  /script>   
PHP
      // PHP program to get sum    // of average of all subsets   // Returns value of Binomial   // Coefficient C(n k)   function   nCr  (  $n     $k  )   {   $C  [  $n   +   1  ][  $k   +   1  ]   =   0  ;   $i  ;   $j  ;   // Calculate value of Binomial   // Coefficient in bottom up manner   for   (  $i   =   0  ;   $i    <=   $n  ;   $i  ++  )   {   for   (  $j   =   0  ;   $j    <=   min  (  $i     $k  );   $j  ++  )   {   // Base Cases   if   (  $j   ==   0   ||   $j   ==   $i  )   $C  [  $i  ][  $j  ]   =   1  ;   // Calculate value using    // previously stored values   else   $C  [  $i  ][  $j  ]   =   $C  [  $i   -   1  ][  $j   -   1  ]   +   $C  [  $i   -   1  ][  $j  ];   }   }   return   $C  [  $n  ][  $k  ];   }   // method returns sum of   // average of all subsets   function   resultOfAllSubsets  (  $arr     $N  )   {   // Initialize result   $result   =   0.0  ;   // Find sum of elements   $sum   =   0  ;   for   (  $i   =   0  ;   $i    <   $N  ;   $i  ++  )   $sum   +=   $arr  [  $i  ];   // looping once for all    // subset of same size   for   (  $n   =   1  ;   $n    <=   $N  ;   $n  ++  )   /* each element occurs nCr(N-1     n-1) times while considering     subset of size n */   $result   +=   ((  $sum   *   (  nCr  (  $N   -   1     $n   -   1  )))   /   $n  );   return   $result  ;   }   // Driver Code   $arr   =   array  (   2     3     5     7   );   $N   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   resultOfAllSubsets  (  $arr     $N  )   ;   // This code is contributed by nitin mittal.    ?>   
Python3
   # Python3 program to get sum   # of average of all subsets   # Returns value of Binomial   # Coefficient C(n k)   def   nCr  (  n     k  ):   C   =   [[  0   for   i   in   range  (  k   +   1  )]   for   j   in   range  (  n   +   1  )]   # Calculate value of Binomial    # Coefficient in bottom up manner   for   i   in   range  (  n   +   1  ):   for   j   in   range  (  min  (  i     k  )   +   1  ):   # Base Cases   if   (  j   ==   0   or   j   ==   i  ):   C  [  i  ][  j  ]   =   1   # Calculate value using    # previously stored values   else  :   C  [  i  ][  j  ]   =   C  [  i  -  1  ][  j  -  1  ]   +   C  [  i  -  1  ][  j  ]   return   C  [  n  ][  k  ]   # Method returns sum of   # average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   # Initialize result   # Find sum of elements   sum   =   0   for   i   in   range  (  N  ):   sum   +=   arr  [  i  ]   # looping once for all subset of same size   for   n   in   range  (  1     N   +   1  ):   # each element occurs nCr(N-1 n-1) times while   # considering subset of size n */   result   +=   (  sum   *   (  nCr  (  N   -   1     n   -   1  )))   /   n   return   result   # Driver code    arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   # This code is contributed by Anant Agarwal.   

Lähtö
63.75 

Aika monimutkaisuus: O(n 3 )
Aputila: O(n 2 )

Tehokas lähestymistapa: tilan optimointi O(1)
Yllä olevan lähestymistavan tilan monimutkaisuuden optimoimiseksi voimme käyttää tehokkaampaa lähestymistapaa, joka välttää koko matriisin tarpeen C[][] tallentaa binomikertoimia. Sen sijaan voimme käyttää yhdistelmäkaavaa laskeaksemme binomikertoimen suoraan tarvittaessa.

Käyttöönoton vaiheet:

  • Toista taulukon elementit ja laske kaikkien elementtien summa.
  • Toista jokaisen osajoukon kokoa 1:stä N:ään.
  • Laske silmukan sisällä keskimäärin elementtien summasta kerrottuna osajoukon koon binomiaalikertoimella. Lisää tulokseen laskettu keskiarvo.
  • Palauta lopputulos.

Toteutus:

C++
   #include          using     namespace     std  ;   // Method to calculate binomial coefficient C(n k)   int     binomialCoeff  (  int     n       int     k  )   {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Method to calculate the sum of the average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;   }   // Driver code to test the above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // Method to calculate binomial coefficient C(n k)      static     int     binomialCoeff  (  int     n       int     k  )     {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )     {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )     (  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     main  (  String  []     args  )     {      int     arr  []     =     {  2       3       5       7  };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   
C#
   using     System  ;   public     class     MainClass   {      // Method to calculate binomial coefficient C(n k)      static     int     BinomialCoeff  (  int     n       int     k  )      {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     ResultOfAllSubsets  (  int  []     arr       int     N  )      {      double     result     =     0.0  ;      int     sumVal     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sumVal     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sumVal     *     BinomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  ResultOfAllSubsets  (  arr       N  ));      }   }   
JavaScript
   // Function to calculate binomial coefficient C(n k)   function     binomialCoeff  (  n       k  )     {      let     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Function to calculate the sum of the average of all subsets   function     resultOfAllSubsets  (  arr  )     {      let     result     =     0.0  ;      let     sum     =     arr  .  reduce  ((  acc       val  )     =>     acc     +     val       0  );      // Loop for each subset size      for     (  let     n     =     1  ;     n      <=     arr  .  length  ;     n  ++  )     {      result     +=     (  sum     *     binomialCoeff  (  arr  .  length     -     1       n     -     1  ))     /     n  ;      }      return     result  ;   }   const     arr     =     [  2       3       5       7  ];   console  .  log  (  resultOfAllSubsets  (  arr  ));   
Python3
   # Method to calculate binomial coefficient C(n k)   def   binomialCoeff  (  n     k  ):   res   =   1   # Since C(n k) = C(n n-k)   if   k   >   n   -   k  :   k   =   n   -   k   # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]   for   i   in   range  (  k  ):   res   *=   (  n   -   i  )   res   //=   (  i   +   1  )   return   res   # Method to calculate the sum of the average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   sum_val   =   0   # Calculate the sum of elements   for   i   in   range  (  N  ):   sum_val   +=   arr  [  i  ]   # Loop for each subset size   for   n   in   range  (  1     N   +   1  ):   result   +=   (  sum_val   *   binomialCoeff  (  N   -   1     n   -   1  ))   /   n   return   result   # Driver code to test the above methods   arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   


Lähtö

 63.75  

Aika monimutkaisuus: O(n^2)
Aputila: O(1)



 

Luo tietokilpailu