Алгоритм Штейна для знаходження НОД

Алгоритм Штейна для знаходження НОД
Спробуйте на GfG Practice

Алгоритм Штейна або бінарний алгоритм GCD це алгоритм, який обчислює найбільший спільний дільник двох цілих невід’ємних чисел. Алгоритм Штейна замінює ділення арифметичними зсувами, порівняннями та відніманням.

приклади:  

Введення : a = 17 b = 34
Вихід : 17

Введення : a = 50 b = 49
Вихід : 1

Алгоритм пошуку НОД за допомогою алгоритму Стейна gcd(a b)  

Алгоритм в основному є оптимізацією стандартного Алгоритм Евкліда для НОД

  1. Якщо і a, і b дорівнюють 0 gcd дорівнює нулю gcd(0 0) = 0.
  2. gcd(a 0) = a і gcd(0 b) = b, оскільки все ділить 0.
  3. Якщо a і b парні, то gcd(a b) = 2*gcd(a/2 b/2), оскільки 2 є спільним дільником. Множення на 2 можна виконати за допомогою оператора побітового зсуву.
  4. Якщо a парне, а b непарне, gcd(a b) = gcd(a/2 b). Аналогічно, якщо a непарне, а b парне, тоді 
    gcd(a b) = gcd(a b/2). Це тому, що 2 не є спільним дільником.
  5. Якщо і a, і b непарні, то gcd(a b) = gcd(|a-b|/2 b). Зверніть увагу, що різниця двох непарних чисел парна
  6. Повторюйте кроки 3–5, доки a = b або a = 0. У будь-якому випадку НОД дорівнює степеню (2 k) * b, де power (2 k) дорівнює 2 у степені k, а k — кількість спільних множників 2, знайдених на кроці 3.
C++
   // Iterative C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  )      swap  (  a       b  );     // Swap u and v.      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Iterative Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd.      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      // Now a and b are both odd. Swap      // if necessary so a  <= b then set      // b = b - a (which is even)      if     (  a     >     b  )         {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      // restore common factors of 2      return     a      < <     k  ;      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Iterative Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # Finding K where K is the   # greatest power of 2 that   # divides both a and b.   k   =   0   while  (((  a   |   b  )   &   1  )   ==   0  ):   a   =   a   >>   1   b   =   b   >>   1   k   =   k   +   1   # Dividing a by 2 until a becomes odd   while   ((  a   &   1  )   ==   0  ):   a   =   a   >>   1   # From here on 'a' is always odd.   while  (  b   !=   0  ):   # If b is even remove all   # factor of 2 in b   while   ((  b   &   1  )   ==   0  ):   b   =   b   >>   1   # Now a and b are both odd. Swap if   # necessary so a  <= b then set   # b = b - a (which is even).   if   (  a   >   b  ):   # Swap u and v.   temp   =   a   a   =   b   b   =   temp   b   =   (  b   -   a  )   # restore common factors of 2   return   (  a    < <   k  )   # Driver code   a   =   34   b   =   17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed by Nikita Tiwari.   
C#
   // Iterative C# program to implement   // Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd. Swap    if necessary so a  <= b then set    b = b - a (which is even).*/      if     (  a     >     b  )     {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal   
JavaScript
    <  script  >   // Iterative JavaScript program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function     gcd  (     a       b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      let     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  ){      let     t     =     a  ;      a     =     b  ;      b     =     t  ;      }      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given numbers is '  +     gcd  (  a       b  ));   // This code contributed by gauravrajput1     <  /script>   
PHP
      // Iterative php program to    // implement Stein's Algorithm   // Function to implement    // Stein's Algorithm   function   gcd  (  $a     $b  )   {   // GCD(0 b) == b; GCD(a 0) == a   // GCD(0 0) == 0   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // Finding K where K is the greatest   // power of 2 that divides both a and b.   $k  ;   for   (  $k   =   0  ;   ((  $a   |   $b  )   &   1  )   ==   0  ;   ++  $k  )   {   $a   >>=   1  ;   $b   >>=   1  ;   }   // Dividing a by 2 until a becomes odd    while   ((  $a   &   1  )   ==   0  )   $a   >>=   1  ;   // From here on 'a' is always odd.   do   {   // If b is even remove    // all factor of 2 in b    while   ((  $b   &   1  )   ==   0  )   $b   >>=   1  ;   // Now a and b are both odd. Swap   // if necessary so a  <= b then set    // b = b - a (which is even)   if   (  $a   >   $b  )   swap  (  $a     $b  );   // Swap u and v.   $b   =   (  $b   -   $a  );   }   while   (  $b   !=   0  );   // restore common factors of 2   return   $a    < <   $k  ;   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is '   .   gcd  (  $a     $b  );   // This code is contributed by ajit   ?>   

Вихід
Gcd of given numbers is 17 

Часова складність: O(N*N)
Допоміжний простір: О(1)

[Очікуваний підхід 2] Рекурсивна реалізація - O(N*N) Час і O(N*N) космос

C++
   // Recursive C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     (  ~  a     &     1  )     // a is even      {      if     (  b     &     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      if     (  ~  b     &     1  )     // a is odd b is even      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Recursive Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Recursive Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   if   (  a   ==   b  ):   return   a   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # look for factors of 2   # a is even   if   ((  ~  a   &   1  )   ==   1  ):   # b is odd   if   ((  b   &   1  )   ==   1  ):   return   gcd  (  a   >>   1     b  )   else  :   # both a and b are even   return   (  gcd  (  a   >>   1     b   >>   1  )    < <   1  )   # a is odd b is even   if   ((  ~  b   &   1  )   ==   1  ):   return   gcd  (  a     b   >>   1  )   # reduce larger number   if   (  a   >   b  ):   return   gcd  ((  a   -   b  )   >>   1     b  )   return   gcd  ((  b   -   a  )   >>   1     a  )   # Driver code   a     b   =   34     17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed   # by Nikita Tiwari.   
C#
   // Recursive C# program to   // implement Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b;      // GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      // a is even      if     ((  ~  a     &     1  )     ==     1  )     {      // b is odd      if     ((  b     &     1  )     ==     1  )      return     gcd  (  a     >>     1       b  );      else      // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // JavaScript program to   // implement Stein's Algorithm      // Function to implement      // Stein's Algorithm      function     gcd  (  a       b  )      {      if     (  a     ==     b  )      return     a  ;          // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;          // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );          else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }          // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );          // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );          return     gcd  ((  b     -     a  )     >>     1       a  );      }   // Driver Code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));        <  /script>   
PHP
      // Recursive PHP program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function   gcd  (  $a     $b  )   {   if   (  $a   ==   $b  )   return   $a  ;   /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // look for factors of 2   if   (  ~  $a   &   1  )   // a is even   {   if   (  $b   &   1  )   // b is odd   return   gcd  (  $a   >>   1     $b  );   else   // both a and b are even   return   gcd  (  $a   >>   1     $b   >>   1  )    < <   1  ;   }   if   (  ~  $b   &   1  )   // a is odd b is even   return   gcd  (  $a     $b   >>   1  );   // reduce larger number   if   (  $a   >   $b  )   return   gcd  ((  $a   -   $b  )   >>   1     $b  );   return   gcd  ((  $b   -   $a  )   >>   1     $a  );   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is: '     gcd  (  $a     $b  );   // This code is contributed by aj_36   ?>   

Вихід
Gcd of given numbers is 17 

Часова складність : O(N*N), де N – кількість бітів у більшому числі.
Допоміжний простір: O(N*N), де N – кількість бітів у більшому числі.

Вам також може сподобатися - Базовий і розширений алгоритм Евкліда

Переваги над алгоритмом НОД Евкліда

  • Алгоритм Штейна є оптимізованою версією алгоритму НОД Евкліда.
  • більш ефективним є використання оператора побітового зсуву.