Оцінка дерева виразів

Оцінка дерева виразів

Дано простий дерево виразів складається з базових двійкових операторів, наприклад + - * і /, і деяких цілих чисел, які обчислюють дерево виразів.

приклади:

введення: Кореневий вузол дерева нижче



pic2

Вихід: 100

введення: Кореневий вузол дерева нижче

pic1

Вихід: 110

Рекомендована практика Дерево виразів Спробуйте!

Підхід: Підхід до вирішення цієї проблеми базується на наступному спостереженні:

Оскільки всі оператори в дереві двійкові, отже, кожен вузол матиме або 0, або 2 дітей. Як можна зробити висновок із наведених вище прикладів, усі цілі значення з’являтимуться у листових вузлах, тоді як внутрішні вузли представляють оператори.

Тому ми можемо зробити непорядковий обхід бінарного дерева і оцінюйте вираз у міру просування вперед.

Щоб оцінити синтаксичне дерево, можна застосувати рекурсивний підхід.

Алгоритм:

  • Нехай t — синтаксичне дерево
  • Якщо  t не дорівнює нулю, тоді      
    • Якщо t.info є операндом, тоді  
      • Повернути  t.info
    • Інакше
      • A = вирішити (t.left)
      • B = вирішити (t.праворуч)
      • return A оператор B, де оператор — це інформація, що міститься в t

Нижче наведено реалізацію вищезазначеного підходу:

C++
   // C++ program to evaluate an expression tree    #include             using     namespace     std  ;      // Class to represent the nodes of syntax tree    class     node      {      public  :         string     info  ;         node     *  left     =     NULL       *  right     =     NULL  ;         node  (  string     x  )         {         info     =     x  ;         }      };      // Utility function to return the integer value    // of a given string    int     toInt  (  string     s  )      {         int     num     =     0  ;             // Check if the integral value is       // negative or not       // If it is not negative generate the number       // normally       if  (  s  [  0  ]  !=  '-'  )         for     (  int     i  =  0  ;     i   <  s  .  length  ();     i  ++  )         num     =     num  *  10     +     (  int  (  s  [  i  ])  -48  );         // If it is negative calculate the +ve number       // first ignoring the sign and invert the       // sign at the end       else      {         for     (  int     i  =  1  ;     i   <  s  .  length  ();     i  ++  )         num     =     num  *  10     +     (  int  (  s  [  i  ])  -48  );         num     =     num  *  -1  ;         }             return     num  ;      }      // This function receives a node of the syntax tree    // and recursively evaluates it    int     eval  (  node  *     root  )      {         // empty tree       if     (  !  root  )         return     0  ;         // leaf node i.e an integer       if     (  !  root  ->  left     &&     !  root  ->  right  )         return     toInt  (  root  ->  info  );         // Evaluate left subtree       int     l_val     =     eval  (  root  ->  left  );         // Evaluate right subtree       int     r_val     =     eval  (  root  ->  right  );         // Check which operator to apply       if     (  root  ->  info  ==  '+'  )         return     l_val  +  r_val  ;         if     (  root  ->  info  ==  '-'  )         return     l_val  -  r_val  ;         if     (  root  ->  info  ==  '*'  )         return     l_val  *  r_val  ;         return     l_val  /  r_val  ;      }      //driver function to check the above program    int     main  ()      {         // create a syntax tree       node     *  root     =     new     node  (  '+'  );         root  ->  left     =     new     node  (  '*'  );         root  ->  left  ->  left     =     new     node  (  '5'  );         root  ->  left  ->  right     =     new     node  (  '-4'  );         root  ->  right     =     new     node  (  '-'  );         root  ->  right  ->  left     =     new     node  (  '100'  );         root  ->  right  ->  right     =     new     node  (  '20'  );         cout      < <     eval  (  root  )      < <     endl  ;         delete  (  root  );         root     =     new     node  (  '+'  );         root  ->  left     =     new     node  (  '*'  );         root  ->  left  ->  left     =     new     node  (  '5'  );         root  ->  left  ->  right     =     new     node  (  '4'  );         root  ->  right     =     new     node  (  '-'  );         root  ->  right  ->  left     =     new     node  (  '100'  );         root  ->  right  ->  right     =     new     node  (  '/'  );         root  ->  right  ->  right  ->  left     =     new     node  (  '20'  );         root  ->  right  ->  right  ->  right     =     new     node  (  '2'  );         cout      < <     eval  (  root  );         return     0  ;      }      
Java
   // Java program to evaluate expression tree   import     java.lang.*  ;   class   GFG  {       Node     root  ;   // Class to represent the nodes of syntax tree   public     static     class   Node      {      String     data  ;      Node     left       right  ;      Node  (  String     d  )      {      data     =     d  ;      left     =     null  ;      right     =     null  ;      }   }   private     static     int     toInt  (  String     s  )   {      int     num     =     0  ;      // Check if the integral value is      // negative or not      // If it is not negative generate       // the number normally      if     (  s  .  charAt  (  0  )     !=     '-'  )      for  (  int     i     =     0  ;     i      <     s  .  length  ();     i  ++  )      num     =     num     *     10     +     ((  int  )  s  .  charAt  (  i  )     -     48  );          // If it is negative calculate the +ve number      // first ignoring the sign and invert the      // sign at the end      else      {      for  (  int     i     =     1  ;     i      <     s  .  length  ();     i  ++  )         num     =     num     *     10     +     ((  int  )(  s  .  charAt  (  i  ))     -     48  );      num     =     num     *     -  1  ;      }      return     num  ;   }   // This function receives a node of the syntax   // tree and recursively evaluate it   public     static     int     evalTree  (  Node     root  )   {          // Empty tree      if     (  root     ==     null  )      return     0  ;      // Leaf node i.e an integer      if     (  root  .  left     ==     null     &&     root  .  right     ==     null  )      return     toInt  (  root  .  data  );      // Evaluate left subtree      int     leftEval     =     evalTree  (  root  .  left  );      // Evaluate right subtree      int     rightEval     =     evalTree  (  root  .  right  );      // Check which operator to apply      if     (  root  .  data  .  equals  (  '+'  ))      return     leftEval     +     rightEval  ;      if     (  root  .  data  .  equals  (  '-'  ))      return     leftEval     -     rightEval  ;      if     (  root  .  data  .  equals  (  '*'  ))      return     leftEval     *     rightEval  ;      return     leftEval     /     rightEval  ;   }   // Driver code   public     static     void     main  (  String  []     args  )   {          // Creating a sample tree      Node     root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '-4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '20'  );      System  .  out  .  println  (  evalTree  (  root  ));      root     =     null  ;      // Creating a sample tree      root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '/'  );      root  .  right  .  right  .  left     =     new     Node  (  '20'  );      root  .  right  .  right  .  right     =     new     Node  (  '2'  );      System  .  out  .  println  (  evalTree  (  root  ));   }   }   // This code is contributed by Ankit Gupta   
Python3
   # Python program to evaluate expression tree   # Class to represent the nodes of syntax tree   class   node  :   def   __init__  (  self     value  ):   self  .  left   =   None   self  .  data   =   value   self  .  right   =   None   # This function receives a node of the syntax tree   # and recursively evaluate it   def   evaluateExpressionTree  (  root  ):   # empty tree   if   root   is   None  :   return   0   # leaf node   if   root  .  left   is   None   and   root  .  right   is   None  :   return   int  (  root  .  data  )   # evaluate left tree   left_sum   =   evaluateExpressionTree  (  root  .  left  )   # evaluate right tree   right_sum   =   evaluateExpressionTree  (  root  .  right  )   # check which operation to apply   if   root  .  data   ==   '+'  :   return   left_sum   +   right_sum   elif   root  .  data   ==   '-'  :   return   left_sum   -   right_sum   elif   root  .  data   ==   '*'  :   return   left_sum   *   right_sum   else  :   return   left_sum   //   right_sum   # Driver function to test above problem   if   __name__   ==   '__main__'  :   # creating a sample tree   root   =   node  (  '+'  )   root  .  left   =   node  (  '*'  )   root  .  left  .  left   =   node  (  '5'  )   root  .  left  .  right   =   node  (  '-4'  )   root  .  right   =   node  (  '-'  )   root  .  right  .  left   =   node  (  '100'  )   root  .  right  .  right   =   node  (  '20'  )   print   (  evaluateExpressionTree  (  root  ))   root   =   None   # creating a sample tree   root   =   node  (  '+'  )   root  .  left   =   node  (  '*'  )   root  .  left  .  left   =   node  (  '5'  )   root  .  left  .  right   =   node  (  '4'  )   root  .  right   =   node  (  '-'  )   root  .  right  .  left   =   node  (  '100'  )   root  .  right  .  right   =   node  (  '/'  )   root  .  right  .  right  .  left   =   node  (  '20'  )   root  .  right  .  right  .  right   =   node  (  '2'  )   print   (  evaluateExpressionTree  (  root  ))   # This code is contributed by Harshit Sidhwa   
C#
   // C# program to evaluate expression tree   using     System  ;   public     class     GFG      {      // Class to represent the nodes of syntax tree      public     class     Node     {      public      String     data  ;      public      Node     left       right  ;      public     Node  (  String     d  )     {      data     =     d  ;      left     =     null  ;      right     =     null  ;      }      }      private     static     int     toInt  (  String     s  )     {      int     num     =     0  ;      // Check if the integral value is      // negative or not      // If it is not negative generate      // the number normally      if     (  s  [  0  ]     !=     '-'  )      for     (  int     i     =     0  ;     i      <     s  .  Length  ;     i  ++  )      num     =     num     *     10     +     ((  int  )     s  [  i  ]     -     48  );      // If it is negative calculate the +ve number      // first ignoring the sign and invert the      // sign at the end      else     {      for     (  int     i     =     1  ;     i      <     s  .  Length  ;     i  ++  )      num     =     num     *     10     +     ((  int  )     (  s  [  i  ])     -     48  );      num     =     num     *     -  1  ;      }      return     num  ;      }      // This function receives a node of the syntax      // tree and recursively evaluate it      public     static     int     evalTree  (  Node     root  )     {      // Empty tree      if     (  root     ==     null  )      return     0  ;      // Leaf node i.e an integer      if     (  root  .  left     ==     null     &&     root  .  right     ==     null  )      return     toInt  (  root  .  data  );      // Evaluate left subtree      int     leftEval     =     evalTree  (  root  .  left  );      // Evaluate right subtree      int     rightEval     =     evalTree  (  root  .  right  );      // Check which operator to apply      if     (  root  .  data  .  Equals  (  '+'  ))      return     leftEval     +     rightEval  ;      if     (  root  .  data  .  Equals  (  '-'  ))      return     leftEval     -     rightEval  ;      if     (  root  .  data  .  Equals  (  '*'  ))      return     leftEval     *     rightEval  ;      return     leftEval     /     rightEval  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )     {      // Creating a sample tree      Node     root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '-4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '20'  );      Console  .  WriteLine  (  evalTree  (  root  ));      root     =     null  ;      // Creating a sample tree      root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '/'  );      root  .  right  .  right  .  left     =     new     Node  (  '20'  );      root  .  right  .  right  .  right     =     new     Node  (  '2'  );      Console  .  WriteLine  (  evalTree  (  root  ));      }   }   // This code is contributed by umadevi9616    
JavaScript
    <  script  >   // javascript program to evaluate expression tree      var     root  ;      // Class to represent the nodes of syntax tree      class     Node     {      constructor  (  val  )     {      this  .  data     =     val  ;      this  .  left     =     null  ;      this  .  right     =     null  ;      }      }      function     toInt  (     s  )     {      var     num     =     0  ;          // Check if the integral value is      // negative or not      // If it is not negative generate      // the number normally      if     (  s  .  charAt  (  0  )     !=     '-'  )      for     (  i     =     0  ;     i      <     s  .  length  ;     i  ++  )      num     =     num     *     10     +     (     s  .  charCodeAt  (  i  )     -     48  );      // If it is negative calculate the +ve number      // first ignoring the sign and invert the      // sign at the end      else     {      for     (  i     =     1  ;     i      <     s  .  length  ;     i  ++  )      num     =     num     *     10     +     (  s  .  charCodeAt  (  i  )     -     48  );      num     =     num     *     -  1  ;      }      return     num  ;      }      // This function receives a node of the syntax      // tree and recursively evaluate it      function     evalTree  (  root  )     {      // Empty tree      if     (  root     ==     null  )      return     0  ;      // Leaf node i.e an integer      if     (  root  .  left     ==     null     &&     root  .  right     ==     null  )      return     toInt  (  root  .  data  );      // Evaluate left subtree      var     leftEval     =     evalTree  (  root  .  left  );      // Evaluate right subtree      var     rightEval     =     evalTree  (  root  .  right  );      // Check which operator to apply      if     (  root  .  data     ===     (  '+'  ))      return     leftEval     +     rightEval  ;      if     (  root  .  data     ===     (  '-'  ))      return     leftEval     -     rightEval  ;      if     (  root  .  data     ===     (  '*'  ))      return     leftEval     *     rightEval  ;      return     leftEval     /     rightEval  ;      }      // Driver code          // Creating a sample tree      var     root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '-4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '20'  );      document  .  write  (  evalTree  (  root  ));      root     =     null  ;      // Creating a sample tree      root     =     new     Node  (  '+'  );      root  .  left     =     new     Node  (  '*'  );      root  .  left  .  left     =     new     Node  (  '5'  );      root  .  left  .  right     =     new     Node  (  '4'  );      root  .  right     =     new     Node  (  '-'  );      root  .  right  .  left     =     new     Node  (  '100'  );      root  .  right  .  right     =     new     Node  (  '/'  );      root  .  right  .  right  .  left     =     new     Node  (  '20'  );      root  .  right  .  right  .  right     =     new     Node  (  '2'  );      document  .  write  (  '  
'
+ evalTree ( root )); // This code is contributed by gauravrajput1 < /script>

Вихід
60 110 

Часова складність: O(n), оскільки кожен вузол відвідується один раз.
Допоміжний простір: O(n)


Кращі Статті

Категорія

Цікаві Статті