Şube ve bağlı kullanarak seyahat satıcısı sorunu

Şube ve bağlı kullanarak seyahat satıcısı sorunu

Bir dizi şehir ve her şehir arasındaki mesafe göz önüne alındığında, sorun her şehri tam olarak bir kez ziyaret eden ve başlangıç ​​noktasına geri dönen mümkün olan en kısa turu bulmaktır.
 

Euler1


Örneğin, sağ taraftaki şekilde gösterilen grafiği göz önünde bulundurun. Grafikteki bir TSP turu 0-13-2-0'dır. Turun maliyeti 80 olan 10+25+30+15'dir.
Aşağıdaki çözümleri tartıştık 
1) Saf ve dinamik programlama  
2) MST kullanarak yaklaşık çözüm
  
 
Şube ve bağlı çözüm  
Ağaçtaki mevcut düğüm için Şube ve Bağlı Yöntemdeki önceki makalelerde görüldüğü gibi, bu düğümü aşağı indirirsek elde edebileceğimiz en iyi çözüm üzerinde bir sınır hesaplıyoruz. Eğer mümkün olan en iyi çözümün kendisi mevcut en iyi (şimdiye kadar en iyi hesaplanan) daha kötüyse, düğümle köklü alt ağacı görmezden geliriz. 
Bir düğüm üzerindeki maliyetin iki maliyet içerdiğini unutmayın. 
1) Düğüme kökten ulaşmanın maliyeti (bir düğüme ulaştığımızda bu maliyet hesaplanır) 
2) Mevcut düğümden bir yaprağa bir cevaba ulaşma maliyeti (bu düğümle alt ağacıyı görmezden gelip gelmeyeceğine karar vermek için bu maliyetten bir sınır hesaplıyoruz).
 

  • Durumunda maksimizasyon problemi Bir üst sınır, verilen düğümü takip edersek bize mümkün olan maksimum çözümü söyler. Örneğin 0/1 sırt çantası bir üst sınır bulmak için açgözlü yaklaşım kullandık .
  • Durumunda minimizasyon problemi Alt sınır, verilen düğümü takip edersek bize mümkün olan minimum çözümü söyler. Örneğin İş atama sorunu Bir işçiye en az maliyet iş atayarak daha düşük bir sınır alıyoruz.


Dalda ve bağlı zorlu kısım, mümkün olan en iyi çözüme bir sınır hesaplamanın bir yolunu bulmaktır. Aşağıda seyahat eden satıcı sorunu için sınırları hesaplamak için kullanılan bir fikir bulunmaktadır.
Herhangi bir turun maliyeti aşağıdaki gibi yazılabilir.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V 


Örneğin, yukarıda gösterilen grafiği düşünün. Aşağıda, her düğüme bitişik minimum maliyet iki kenar bulunmaktadır. 
 

Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example. 


Şimdi alt sınırın hesaplanması hakkında bir fikrimiz var. Durum uzay arama ağacının nasıl uygulanacağını görelim. Tüm olası düğümleri numaralandırmaya başlıyoruz (tercihen sözlükbilimsel sırayla)
1. Kök düğümü: Genellik kaybı olmadan, alt sınırın yukarıda hesaplandığı Vertex '0' da başladığımızı varsayıyoruz.
Seviye 2 ile uğraşmak: Bir sonraki seviye, gidebileceğimiz tüm olası köşeleri numaralandırır (herhangi bir yolda bir tepe noktasında sadece bir kez meydana gelmesi gerektiğini unutmayın) (grafiğin tamamlandığını unutmayın). Vertex 1 için hesapladığımızı düşünün, çünkü 0'dan 1'e taşındığımızda turumuz artık 0-1 kenarını içeriyordu. Bu, kökün alt sınırında gerekli değişiklikleri yapmamızı sağlar. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1) 


Nasıl çalışır? Kenar 0-1'i dahil etmek için 0-1'in kenar maliyetini ekliyoruz ve alt sınırın mümkün olduğunca sıkı kalacak şekilde bir kenar ağırlığı çıkarıyoruz, bu da 0 ve 1'in minimum kenarlarının toplamı olacak.
Diğer seviyelerle uğraşmak: Bir sonraki seviyeye geçtikçe tekrar tüm olası köşeleri numaralandırırız. Yukarıdaki durum için 1'den sonra daha ileri gidiyor 2 3 4 ... n için kontrol ediyoruz. 
1'den 1'e taşındığımız için 2 için alt sınır düşünün 1-2'yi tura ekliyoruz ve bu düğüm için yeni alt sınırını değiştiriyoruz.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2) 


Not: Formüldeki tek değişiklik, bu sefer 1 için ikinci minimum kenar maliyeti eklediğimizdir, çünkü minimum kenar maliyeti zaten önceki seviyede çıkarılmıştır. 
 

C++
   // C++ program to solve Traveling Salesman Problem   // using Branch and Bound.   #include          using     namespace     std  ;   const     int     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.   int     final_path  [  N  +  1  ];   // visited[] keeps track of the already visited nodes   // in a particular path   bool     visited  [  N  ];   // Stores the final minimum weight of shortest tour.   int     final_res     =     INT_MAX  ;   // Function to copy temporary solution to   // the final solution   void     copyToFinal  (  int     curr_path  [])   {      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   int     firstMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     min     =     INT_MAX  ;      for     (  int     k  =  0  ;     k   <  N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]   <  min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ];      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   int     secondMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     first     =     INT_MAX       second     =     INT_MAX  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ];      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]   void     TSPRec  (  int     adj  [  N  ][  N  ]     int     curr_bound       int     curr_weight        int     level       int     curr_path  [])   {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level  ==  N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level  -1  ]][  i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level  +  1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -1  ]][  i  ];      curr_bound     =     temp  ;      // Also reset the visited array      memset  (  visited       false       sizeof  (  visited  ));      for     (  int     j  =  0  ;     j   <=  level  -1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }   }   // This function sets up final_path[]    void     TSP  (  int     adj  [  N  ][  N  ])   {      int     curr_path  [  N  +  1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      memset  (  curr_path       -1       sizeof  (  curr_path  ));      memset  (  visited       0       sizeof  (  curr_path  ));      // Compute initial bound      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  &  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );   }   // Driver code   int     main  ()   {      //Adjacency matrix for the given graph      int     adj  [  N  ][  N  ]     =     {     {  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }      };      TSP  (  adj  );      printf  (  'Minimum cost : %d  n  '       final_res  );      printf  (  'Path Taken : '  );      for     (  int     i  =  0  ;     i   <=  N  ;     i  ++  )      printf  (  '%d '       final_path  [  i  ]);      return     0  ;   }   
Java
   // Java program to solve Traveling Salesman Problem   // using Branch and Bound.   import     java.util.*  ;   class   GFG   {          static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int     final_path  []     =     new     int  [  N     +     1  ]  ;      // visited[] keeps track of the already visited nodes      // in a particular path      static     boolean     visited  []     =     new     boolean  [  N  ]  ;      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Integer  .  MAX_VALUE  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int     curr_path  []  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ]  ;      final_path  [  N  ]     =     curr_path  [  0  ]  ;      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int     adj  [][]       int     i  )      {      int     min     =     Integer  .  MAX_VALUE  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ]  ;      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int     adj  [][]       int     i  )      {      int     first     =     Integer  .  MAX_VALUE       second     =     Integer  .  MAX_VALUE  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ]  ;      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ]  ;      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored which      // would later be copied to final_path[]      static     void     TSPRec  (  int     adj  [][]       int     curr_bound       int     curr_weight        int     level       int     curr_path  []  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -  1  ]][  curr_path  [  0  ]]  ;          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -  1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ]  ;      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level     +     1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -  1  ]][  i  ]  ;      curr_bound     =     temp  ;      // Also reset the visited array      Arrays  .  fill  (  visited    false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]       static     void     TSP  (  int     adj  [][]  )      {      int     curr_path  []     =     new     int  [  N     +     1  ]  ;      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Arrays  .  fill  (  curr_path       -  1  );      Arrays  .  fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  ==  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }          // Driver code      public     static     void     main  (  String  []     args  )         {      //Adjacency matrix for the given graph      int     adj  [][]     =     {{  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }     };      TSP  (  adj  );      System  .  out  .  printf  (  'Minimum cost : %dn'       final_res  );      System  .  out  .  printf  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )         {      System  .  out  .  printf  (  '%d '       final_path  [  i  ]  );      }      }   }   /* This code contributed by PrinciRaj1992 */   
Python3
   # Python3 program to solve    # Traveling Salesman Problem using    # Branch and Bound.   import   math   maxsize   =   float  (  'inf'  )   # Function to copy temporary solution   # to the final solution   def   copyToFinal  (  curr_path  ):   final_path  [:  N   +   1  ]   =   curr_path  [:]   final_path  [  N  ]   =   curr_path  [  0  ]   # Function to find the minimum edge cost    # having an end at the vertex i   def   firstMin  (  adj     i  ):   min   =   maxsize   for   k   in   range  (  N  ):   if   adj  [  i  ][  k  ]    <   min   and   i   !=   k  :   min   =   adj  [  i  ][  k  ]   return   min   # function to find the second minimum edge    # cost having an end at the vertex i   def   secondMin  (  adj     i  ):   first     second   =   maxsize     maxsize   for   j   in   range  (  N  ):   if   i   ==   j  :   continue   if   adj  [  i  ][  j  ]    <=   first  :   second   =   first   first   =   adj  [  i  ][  j  ]   elif  (  adj  [  i  ][  j  ]    <=   second   and   adj  [  i  ][  j  ]   !=   first  ):   second   =   adj  [  i  ][  j  ]   return   second   # function that takes as arguments:   # curr_bound -> lower bound of the root node   # curr_weight-> stores the weight of the path so far   # level-> current level while moving   # in the search space tree   # curr_path[] -> where the solution is being stored   # which would later be copied to final_path[]   def   TSPRec  (  adj     curr_bound     curr_weight     level     curr_path     visited  ):   global   final_res   # base case is when we have reached level N    # which means we have covered all the nodes once   if   level   ==   N  :   # check if there is an edge from   # last vertex in path back to the first vertex   if   adj  [  curr_path  [  level   -   1  ]][  curr_path  [  0  ]]   !=   0  :   # curr_res has the total weight   # of the solution we got   curr_res   =   curr_weight   +   adj  [  curr_path  [  level   -   1  ]]   [  curr_path  [  0  ]]   if   curr_res    <   final_res  :   copyToFinal  (  curr_path  )   final_res   =   curr_res   return   # for any other level iterate for all vertices   # to build the search space tree recursively   for   i   in   range  (  N  ):   # Consider next vertex if it is not same    # (diagonal entry in adjacency matrix and    # not visited already)   if   (  adj  [  curr_path  [  level  -  1  ]][  i  ]   !=   0   and   visited  [  i  ]   ==   False  ):   temp   =   curr_bound   curr_weight   +=   adj  [  curr_path  [  level   -   1  ]][  i  ]   # different computation of curr_bound    # for level 2 from the other levels   if   level   ==   1  :   curr_bound   -=   ((  firstMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   else  :   curr_bound   -=   ((  secondMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   # curr_bound + curr_weight is the actual lower bound    # for the node that we have arrived on.   # If current lower bound  < final_res    # we need to explore the node further   if   curr_bound   +   curr_weight    <   final_res  :   curr_path  [  level  ]   =   i   visited  [  i  ]   =   True   # call TSPRec for the next level   TSPRec  (  adj     curr_bound     curr_weight     level   +   1     curr_path     visited  )   # Else we have to prune the node by resetting    # all changes to curr_weight and curr_bound   curr_weight   -=   adj  [  curr_path  [  level   -   1  ]][  i  ]   curr_bound   =   temp   # Also reset the visited array   visited   =   [  False  ]   *   len  (  visited  )   for   j   in   range  (  level  ):   if   curr_path  [  j  ]   !=   -  1  :   visited  [  curr_path  [  j  ]]   =   True   # This function sets up final_path   def   TSP  (  adj  ):   # Calculate initial lower bound for the root node    # using the formula 1/2 * (sum of first min +    # second min) for all edges. Also initialize the    # curr_path and visited array   curr_bound   =   0   curr_path   =   [  -  1  ]   *   (  N   +   1  )   visited   =   [  False  ]   *   N   # Compute initial bound   for   i   in   range  (  N  ):   curr_bound   +=   (  firstMin  (  adj     i  )   +   secondMin  (  adj     i  ))   # Rounding off the lower bound to an integer   curr_bound   =   math  .  ceil  (  curr_bound   /   2  )   # We start at vertex 1 so the first vertex    # in curr_path[] is 0   visited  [  0  ]   =   True   curr_path  [  0  ]   =   0   # Call to TSPRec for curr_weight    # equal to 0 and level 1   TSPRec  (  adj     curr_bound     0     1     curr_path     visited  )   # Driver code   # Adjacency matrix for the given graph   adj   =   [[  0     10     15     20  ]   [  10     0     35     25  ]   [  15     35     0     30  ]   [  20     25     30     0  ]]   N   =   4   # final_path[] stores the final solution    # i.e. the // path of the salesman.   final_path   =   [  None  ]   *   (  N   +   1  )   # visited[] keeps track of the already   # visited nodes in a particular path   visited   =   [  False  ]   *   N   # Stores the final minimum weight   # of shortest tour.   final_res   =   maxsize   TSP  (  adj  )   print  (  'Minimum cost :'     final_res  )   print  (  'Path Taken : '     end   =   ' '  )   for   i   in   range  (  N   +   1  ):   print  (  final_path  [  i  ]   end   =   ' '  )   # This code is contributed by ng24_7   
C#
   // C# program to solve Traveling Salesman Problem   // using Branch and Bound.   using     System  ;   public     class     GFG     {      static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int  []     final_path     =     new     int  [  N     +     1  ];      // visited[] keeps track of the already visited nodes      // in a particular path      static     bool  []     visited     =     new     bool  [  N  ];      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Int32  .  MaxValue  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int  []     curr_path  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int  [     ]     adj       int     i  )      {      int     min     =     Int32  .  MaxValue  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i       k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i       k  ];      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int  [     ]     adj       int     i  )      {      int     first     =     Int32  .  MaxValue       second     =     Int32  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i       j  ]      <=     first  )     {      second     =     first  ;      first     =     adj  [  i       j  ];      }      else     if     (  adj  [  i       j  ]      <=     second      &&     adj  [  i       j  ]     !=     first  )      second     =     adj  [  i       j  ];      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored      // which      // would later be copied to final_path[]      static     void     TSPRec  (  int  [     ]     adj       int     curr_bound        int     curr_weight       int     level        int  []     curr_path  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )     {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]     curr_path  [  0  ]]      !=     0  )     {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight      +     adj  [  curr_path  [  level     -     1  ]      curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )     {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      // Consider next vertex if it is not same      // (diagonal entry in adjacency matrix and not      // visited already)      if     (  adj  [  curr_path  [  level     -     1  ]     i  ]     !=     0      &&     visited  [  i  ]     ==     false  )     {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]     i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  )      curr_bound      -=     ((  firstMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      else      curr_bound      -=     ((  secondMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      // curr_bound + curr_weight is the actual      // lower bound for the node that we have      // arrived on If current lower bound  <      // final_res we need to explore the node      // further      if     (  curr_bound     +     curr_weight      <     final_res  )     {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight        level     +     1       curr_path  );      }      // Else we have to prune the node by      // resetting all changes to curr_weight and      // curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]     i  ];      curr_bound     =     temp  ;      // Also reset the visited array      Array  .  Fill  (  visited       false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]      static     void     TSP  (  int  [     ]     adj  )      {      int  []     curr_path     =     new     int  [  N     +     1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Array  .  Fill  (  curr_path       -  1  );      Array  .  Fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound      +=     (  firstMin  (  adj       i  )     +     secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound     ==     1  )     ?     curr_bound     /     2     +     1      :     curr_bound     /     2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }      // Driver code      static     public     void     Main  ()      {      // Adjacency matrix for the given graph      int  [     ]     adj     =     {     {     0       10       15       20     }      {     10       0       35       25     }      {     15       35       0       30     }      {     20       25       30       0     }     };      TSP  (  adj  );      Console  .  WriteLine  (  'Minimum cost : '     +     final_res  );      Console  .  Write  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )     {      Console  .  Write  (  final_path  [  i  ]     +     ' '  );      }      }   }   // This code is contributed by Rohit Pradhan   
JavaScript
   const     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.      let     final_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // visited[] keeps track of the already visited nodes   // in a particular path      let     visited     =     Array     (  N  ).  fill     (  false  );   // Stores the final minimum weight of shortest tour.      let     final_res     =     Number  .  MAX_SAFE_INTEGER  ;   // Function to copy temporary solution to   // the final solution   function     copyToFinal     (  curr_path  ){      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      final_path  [  i  ]     =     curr_path  [  i  ];      }      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   function     firstMin     (  adj       i  ){   let     min     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     k     =     0  ;     k      <     N  ;     k  ++  ){      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !==     k  ){      min     =     adj  [  i  ][  k  ];      }      }      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   function     secondMin     (  adj       i  ){      let     first     =     Number  .  MAX_SAFE_INTEGER  ;      let     second     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     j     =     0  ;     j      <     N  ;     j  ++  ){      if     (  i     ==     j  ){      continue  ;      }      if     (  adj  [  i  ][  j  ]      <=     first  ){      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&     adj  [  i  ][  j  ]     !==     first  ){      second     =     adj  [  i  ][  j  ];      }      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]      function     TSPRec     (  adj       curr_bound       curr_weight       level       curr_path  )   {       // base case is when we have reached level N which   // means we have covered all the nodes once      if     (  level     ==     N  )      {         // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !==     0  )      {          // curr_res has the total weight of the      // solution we got      let     curr_res     =      curr_weight     +     adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]];          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal     (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;       }          // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){          // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level     -     1  ]][  i  ]     !==     0     &&     !  visited  [  i  ]){          let     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ];          // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  ){      curr_bound     -=     (  firstMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }      else      {      curr_bound     -=     (  secondMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }          // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  ){      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;         // call TSPRec for the next level      TSPRec     (  adj       curr_bound       curr_weight       level     +     1       curr_path  );       }          // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]][  i  ];      curr_bound     =     temp  ;          // Also reset the visited array      visited  .  fill     (  false  )         for     (  var     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;       }       }   }      // This function sets up final_path[]       function     TSP     (  adj  )   {       let     curr_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // Calculate initial lower bound for the root node   // using the formula 1/2 * (sum of first min +   // second min) for all edges.   // Also initialize the curr_path and visited array      let     curr_bound     =     0  ;       visited  .  fill     (  false  );          // compute initial bound      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      curr_bound     +=     firstMin     (  adj       i  )     +     secondMin     (  adj       i  );          }          // Rounding off the lower bound to an integer      curr_bound     =     curr_bound     ==     1     ?     (  curr_bound     /     2  )     +     1     :     (  curr_bound     /     2  );       // We start at vertex 1 so the first vertex   // in curr_path[] is 0      visited  [  0  ]     =     true  ;       curr_path  [  0  ]     =     0  ;       // Call to TSPRec for curr_weight equal to   // 0 and level 1      TSPRec     (  adj       curr_bound       0       1       curr_path  );   }   //Adjacency matrix for the given graph      let     adj     =  [[  0       10       15       20  ]         [  10       0       35       25  ]      [  15       35       0       30  ]      [  20       25       30       0  ]];       TSP     (  adj  );       console  .  log     (  `Minimum cost:  ${  final_res  }  `  );   console  .  log     (  `Path Taken:  ${  final_path  .  join     (  ' '  )  }  `  );      // This code is contributed by anskalyan3.   

Çıktı:  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0  

Yuvarlama bu kod satırında yapılıyor:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2);  

Şube ve bağlı TSP algoritmasında, her bir tepe noktası için minimum kenar maliyetlerini toplayarak ve daha sonra ikiye bölünerek optimal çözümün toplam maliyeti üzerinde daha düşük bir sınır hesaplıyoruz. Ancak bu alt sınır bir tamsayı olmayabilir. Bir tamsayı daha düşük sınır almak için yuvarlama kullanabiliriz.

Yukarıdaki kodda Curr_Bound değişkeni, optimal çözümün toplam maliyeti üzerindeki akım alt sınırını tutar. Seviye düzeyinde yeni bir tepe noktası ziyaret ettiğimizde, yeni tepe noktası ve en yakın iki komşusu için minimum kenar maliyetlerinin toplamını alarak yeni bir alt sınır new_bound'u hesaplıyoruz. Daha sonra New_Bound'u en yakın tam sayısına yuvarlayarak Curr_Bound değişkenini güncelliyoruz.

Seviye 1 ise, en yakın tamsaya yuvarlanırız. Bunun nedeni, şimdiye kadar sadece bir tepe noktasını ziyaret ettik ve optimal çözümün toplam maliyeti tahminimizde muhafazakar olmak istiyoruz. Seviye 1'den büyükse, daha önce bazı köşeleri ziyaret ettiğimiz ve bu nedenle optimal çözümün toplam maliyeti hakkında daha doğru bir tahmin yapabileceğimiz gerçeğini dikkate alan daha agresif bir yuvarlama stratejisi kullanıyoruz.


Zaman karmaşıklığı: Dal ve sınırın en kötü karmaşıklığı, kaba kuvvetinkiyle aynı şekilde aynı kalır, çünkü en kötü durumda asla bir düğümü budama şansı bulamayabiliriz. Oysa pratikte TSP'nin farklı örneğine bağlı olarak çok iyi performans gösterir. Karmaşıklık ayrıca, kaç düğüm budama yapacağına karar verenler olduğu için sınırlayıcı fonksiyonun seçimine de bağlıdır.
Referanslar:  
http://lcm.csa.iisc.ernet.in/dsa/node187.html