Dişli İkili Ağaç | Ekleme

Dişli İkili Ağaç | Ekleme

konuyu zaten tartışmıştık İkili Dişli İkili Ağaç .
İkili iş parçacıklı ağaca ekleme, ikili ağaca eklemeye benzer ancak her öğenin eklenmesinden sonra iş parçacıklarını ayarlamamız gerekecektir.

İkili Dişli Düğümün C gösterimi: 

struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; }; 

Aşağıdaki açıklamada ele aldığımız İkili Arama Ağacı (BST) ekleme olarak ekleme BST'lerdeki bazı kurallarla tanımlanır.
İzin vermek tmp yeni eklenen düğüm olsun . Ekleme sırasında üç durum olabilir:



Durum 1: Boş ağaca ekleme  

Tmp'nin hem sol hem de sağ işaretçileri NULL olarak ayarlanacak ve yeni düğüm kök haline gelecektir. 

root = tmp; tmp -> left = NULL; tmp -> right = NULL; 

Durum 2: Sol alt öğe olarak yeni düğüm eklendiğinde  

Düğümü uygun yerine yerleştirdikten sonra, onun sol ve sağ dişlerinin sırasıyla öncül ve ardılı işaret etmesini sağlamalıyız. Olan düğüm sıra dışı halef . Yani yeni düğümün sol ve sağ konuları- 

tmp -> left = par ->left; tmp -> right = par; 

Eklemeden önce ebeveynin sol işaretçisi bir iş parçacığıydı ancak ekleme sonrasında yeni düğümü işaret eden bir bağlantı olacaktır. 

par -> lthread = false; par -> left = temp; 

Aşağıdaki örnek, ebeveyninin sol çocuğu olarak eklenen bir düğümü göstermektedir. 
 

Dişli İkili Ağaç | Ekleme


13'ün eklenmesinden sonra 
 

Dişli İkili Ağaç | Ekleme


14'ün selefi 13'ün selefi olur, böylece 13 puanlık konu 10'a bırakılır. 
13'ün halefi 14'tür, yani sağdaki iplik 13 puandır ve soldaki çocuk 13'tür. 
14'ün sol işaretçisi artık bir iş parçacığı değil, 13 olan sol çocuğa işaret ediyor.

Durum 3: Yeni düğüm sağ alt öğe olarak eklendiğinde  

Tmp'nin ebeveyni onun sıralı öncülüdür. Ebeveynin sıralı halefi olan düğüm artık bu düğümün sıralı halefidir tmp. Yani yeni düğümün sol ve sağ konuları- 

tmp -> left = par; tmp -> right = par -> right; 

Eklemeden önce ebeveynin sağ işaretçisi bir iş parçacığıydı ancak eklemeden sonra yeni düğümü işaret eden bir bağlantı olacaktır. 

par -> rthread = false; par -> right = tmp; 

Aşağıdaki örnek, ebeveyninin sağ çocuğu olarak eklenen bir düğümü göstermektedir. 
 

Dişli İkili Ağaç | Ekleme


15 takıldıktan sonra 
 

Dişli İkili Ağaç | Ekleme


14'ün ardılı 15'in ardılı olur, yani 15'in sağ dizisi 16'ya çıkar 
15'in öncülü 14'tür, dolayısıyla 15 puanlık sol iş parçacığı 14'e düşer. 
14'ün sağ işaretçisi artık bir konu değil, 15 olan sağ çocuğa işaret ediyor.

Dişli İkili Arama Ağacına yeni bir düğüm eklemek için C++ uygulaması:  
Beğenmek standart BST kesici uç anahtar değerini ağaçta ararız. Anahtar zaten mevcutsa geri döneriz, aksi takdirde yeni anahtar aramanın sona erdiği noktaya eklenir. BST'de arama, anahtarı bulduğumuzda veya NULL sol veya sağ işaretçiye ulaştığımızda sona erer. Burada, ilk düğümün sol işaretçisi ve son düğümün sağ işaretçisi dışındaki tüm sol ve sağ NULL işaretçileri iş parçacıklarıyla değiştirilir. Yani burada bir NULL işaretçisine veya bir konuya ulaştığımızda arama başarısız olacaktır.

Uygulama:

C++
   // Insertion in Threaded Binary Search Tree.   #include       using     namespace     std  ;   struct     Node   {      struct     Node     *  left       *  right  ;      int     info  ;      // False if left pointer points to predecessor      // in Inorder Traversal      bool     lthread  ;      // False if right pointer points to successor      // in Inorder Traversal      bool     rthread  ;   };   // Insert a Node in Binary Threaded Tree   struct     Node     *  insert  (  struct     Node     *  root       int     ikey  )   {      // Searching for a Node with given value      Node     *  ptr     =     root  ;      Node     *  par     =     NULL  ;     // Parent of key to be inserted      while     (  ptr     !=     NULL  )      {      // If key already exists return      if     (  ikey     ==     (  ptr  ->  info  ))      {      printf  (  'Duplicate Key !  n  '  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.      if     (  ikey      <     ptr  ->  info  )      {      if     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      else      break  ;      }      // Moving on right subtree.      else      {      if     (  ptr  ->  rthread     ==     false  )      ptr     =     ptr     ->     right  ;      else      break  ;      }      }      // Create a new node      Node     *  tmp     =     new     Node  ;      tmp     ->     info     =     ikey  ;      tmp     ->     lthread     =     true  ;      tmp     ->     rthread     =     true  ;      if     (  par     ==     NULL  )      {      root     =     tmp  ;      tmp     ->     left     =     NULL  ;      tmp     ->     right     =     NULL  ;      }      else     if     (  ikey      <     (  par     ->     info  ))      {      tmp     ->     left     =     par     ->     left  ;      tmp     ->     right     =     par  ;      par     ->     lthread     =     false  ;      par     ->     left     =     tmp  ;      }      else      {      tmp     ->     left     =     par  ;      tmp     ->     right     =     par     ->     right  ;      par     ->     rthread     =     false  ;      par     ->     right     =     tmp  ;      }      return     root  ;   }   // Returns inorder successor using rthread   struct     Node     *  inorderSuccessor  (  struct     Node     *  ptr  )   {      // If rthread is set we can quickly find      if     (  ptr     ->     rthread     ==     true  )      return     ptr  ->  right  ;      // Else return leftmost child of right subtree      ptr     =     ptr     ->     right  ;      while     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      return     ptr  ;   }   // Printing the threaded tree   void     inorder  (  struct     Node     *  root  )   {      if     (  root     ==     NULL  )      printf  (  'Tree is empty'  );      // Reach leftmost node      struct     Node     *  ptr     =     root  ;      while     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      // One by one print successors      while     (  ptr     !=     NULL  )      {      printf  (  '%d '    ptr     ->     info  );      ptr     =     inorderSuccessor  (  ptr  );      }   }   // Driver Program   int     main  ()   {      struct     Node     *  root     =     NULL  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );      return     0  ;   }   
Java
   // Java program Insertion in Threaded Binary Search Tree.    import     java.util.*  ;   public     class   solution   {   static     class   Node      {         Node     left       right  ;         int     info  ;             // False if left pointer points to predecessor       // in Inorder Traversal       boolean     lthread  ;             // False if right pointer points to successor       // in Inorder Traversal       boolean     rthread  ;      };          // Insert a Node in Binary Threaded Tree    static     Node     insert  (     Node     root       int     ikey  )      {         // Searching for a Node with given value       Node     ptr     =     root  ;         Node     par     =     null  ;     // Parent of key to be inserted       while     (  ptr     !=     null  )         {         // If key already exists return       if     (  ikey     ==     (  ptr  .  info  ))         {         System  .  out  .  printf  (  'Duplicate Key !n'  );         return     root  ;         }             par     =     ptr  ;     // Update parent pointer           // Moving on left subtree.       if     (  ikey      <     ptr  .  info  )         {         if     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;         else      break  ;         }             // Moving on right subtree.       else      {         if     (  ptr  .  rthread     ==     false  )         ptr     =     ptr     .     right  ;         else      break  ;         }         }             // Create a new node       Node     tmp     =     new     Node  ();         tmp     .     info     =     ikey  ;         tmp     .     lthread     =     true  ;         tmp     .     rthread     =     true  ;             if     (  par     ==     null  )         {         root     =     tmp  ;         tmp     .     left     =     null  ;         tmp     .     right     =     null  ;         }         else     if     (  ikey      <     (  par     .     info  ))         {         tmp     .     left     =     par     .     left  ;         tmp     .     right     =     par  ;         par     .     lthread     =     false  ;         par     .     left     =     tmp  ;         }         else      {         tmp     .     left     =     par  ;         tmp     .     right     =     par     .     right  ;         par     .     rthread     =     false  ;         par     .     right     =     tmp  ;         }             return     root  ;      }          // Returns inorder successor using rthread    static     Node     inorderSuccessor  (     Node     ptr  )      {         // If rthread is set we can quickly find       if     (  ptr     .     rthread     ==     true  )         return     ptr  .  right  ;             // Else return leftmost child of right subtree       ptr     =     ptr     .     right  ;         while     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;         return     ptr  ;      }          // Printing the threaded tree    static     void     inorder  (     Node     root  )      {         if     (  root     ==     null  )         System  .  out  .  printf  (  'Tree is empty'  );             // Reach leftmost node       Node     ptr     =     root  ;         while     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;             // One by one print successors       while     (  ptr     !=     null  )         {         System  .  out  .  printf  (  '%d '    ptr     .     info  );         ptr     =     inorderSuccessor  (  ptr  );         }      }          // Driver Program    public     static     void     main  (  String  []     args  )   {         Node     root     =     null  ;             root     =     insert  (  root       20  );         root     =     insert  (  root       10  );         root     =     insert  (  root       30  );         root     =     insert  (  root       5  );         root     =     insert  (  root       16  );         root     =     insert  (  root       14  );         root     =     insert  (  root       17  );         root     =     insert  (  root       13  );             inorder  (  root  );      }      }   //contributed by Arnab Kundu   // This code is updated By Susobhan Akhuli   
Python3
   # Insertion in Threaded Binary Search Tree.    class   newNode  :   def   __init__  (  self     key  ):   # False if left pointer points to    # predecessor in Inorder Traversal    self  .  info   =   key   self  .  left   =   None   self  .  right   =  None   self  .  lthread   =   True   # False if right pointer points to    # successor in Inorder Traversal    self  .  rthread   =   True   # Insert a Node in Binary Threaded Tree    def   insert  (  root     ikey  ):   # Searching for a Node with given value    ptr   =   root   par   =   None   # Parent of key to be inserted    while   ptr   !=   None  :   # If key already exists return    if   ikey   ==   (  ptr  .  info  ):   print  (  'Duplicate Key !'  )   return   root   par   =   ptr   # Update parent pointer    # Moving on left subtree.    if   ikey    <   ptr  .  info  :   if   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   else  :   break   # Moving on right subtree.    else  :   if   ptr  .  rthread   ==   False  :   ptr   =   ptr  .  right   else  :   break   # Create a new node    tmp   =   newNode  (  ikey  )   if   par   ==   None  :   root   =   tmp   tmp  .  left   =   None   tmp  .  right   =   None   elif   ikey    <   (  par  .  info  ):   tmp  .  left   =   par  .  left   tmp  .  right   =   par   par  .  lthread   =   False   par  .  left   =   tmp   else  :   tmp  .  left   =   par   tmp  .  right   =   par  .  right   par  .  rthread   =   False   par  .  right   =   tmp   return   root   # Returns inorder successor using rthread    def   inorderSuccessor  (  ptr  ):   # If rthread is set we can quickly find    if   ptr  .  rthread   ==   True  :   return   ptr  .  right   # Else return leftmost child of    # right subtree    ptr   =   ptr  .  right   while   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   return   ptr   # Printing the threaded tree    def   inorder  (  root  ):   if   root   ==   None  :   print  (  'Tree is empty'  )   # Reach leftmost node    ptr   =   root   while   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   # One by one print successors    while   ptr   !=   None  :   print  (  ptr  .  info    end  =  ' '  )   ptr   =   inorderSuccessor  (  ptr  )   # Driver Code   if   __name__   ==   '__main__'  :   root   =   None   root   =   insert  (  root     20  )   root   =   insert  (  root     10  )   root   =   insert  (  root     30  )   root   =   insert  (  root     5  )   root   =   insert  (  root     16  )   root   =   insert  (  root     14  )   root   =   insert  (  root     17  )   root   =   insert  (  root     13  )   inorder  (  root  )   # This code is contributed by PranchalK   
C#
   using     System  ;   // C# program Insertion in Threaded Binary Search Tree.    public     class     solution   {   public     class     Node   {      public     Node     left       right  ;      public     int     info  ;      // False if left pointer points to predecessor       // in Inorder Traversal       public     bool     lthread  ;      // False if right pointer points to successor       // in Inorder Traversal       public     bool     rthread  ;   }   // Insert a Node in Binary Threaded Tree    public     static     Node     insert  (  Node     root       int     ikey  )   {      // Searching for a Node with given value       Node     ptr     =     root  ;      Node     par     =     null  ;     // Parent of key to be inserted      while     (  ptr     !=     null  )      {      // If key already exists return       if     (  ikey     ==     (  ptr  .  info  ))      {      Console  .  Write  (  'Duplicate Key !n'  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.       if     (  ikey      <     ptr  .  info  )      {      if     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      else      {      break  ;      }      }      // Moving on right subtree.       else      {      if     (  ptr  .  rthread     ==     false  )      {      ptr     =     ptr  .  right  ;      }      else      {      break  ;      }      }      }      // Create a new node       Node     tmp     =     new     Node  ();      tmp  .  info     =     ikey  ;      tmp  .  lthread     =     true  ;      tmp  .  rthread     =     true  ;      if     (  par     ==     null  )      {      root     =     tmp  ;      tmp  .  left     =     null  ;      tmp  .  right     =     null  ;      }      else     if     (  ikey      <     (  par  .  info  ))      {      tmp  .  left     =     par  .  left  ;      tmp  .  right     =     par  ;      par  .  lthread     =     false  ;      par  .  left     =     tmp  ;      }      else      {      tmp  .  left     =     par  ;      tmp  .  right     =     par  .  right  ;      par  .  rthread     =     false  ;      par  .  right     =     tmp  ;      }      return     root  ;   }   // Returns inorder successor using rthread    public     static     Node     inorderSuccessor  (  Node     ptr  )   {      // If rthread is set we can quickly find       if     (  ptr  .  rthread     ==     true  )      {      return     ptr  .  right  ;      }      // Else return leftmost child of right subtree       ptr     =     ptr  .  right  ;      while     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      return     ptr  ;   }   // Printing the threaded tree    public     static     void     inorder  (  Node     root  )   {      if     (  root     ==     null  )      {      Console  .  Write  (  'Tree is empty'  );      }      // Reach leftmost node       Node     ptr     =     root  ;      while     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      // One by one print successors       while     (  ptr     !=     null  )      {      Console  .  Write  (  '{0:D} '    ptr  .  info  );      ptr     =     inorderSuccessor  (  ptr  );      }   }   // Driver Program    public     static     void     Main  (  string  []     args  )   {      Node     root     =     null  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );   }   }      // This code is contributed by Shrikant13   
JavaScript
    <  script  >   // javascript program Insertion in Threaded Binary Search Tree.       class     Node     {      constructor  (){   this  .  left     =     null       this  .  right     =     null  ;      this  .  info     =     0  ;      // False if left pointer points to predecessor      // in Inorder Traversal      this  .  lthread     =     false  ;      // False if right pointer points to successor      // in Inorder Traversal      this  .  rthread     =     false  ;      }      }      // Insert a Node in Binary Threaded Tree      function     insert  (  root          ikey  )     {      // Searching for a Node with given value   var     ptr     =     root  ;   var     par     =     null  ;     // Parent of key to be inserted      while     (  ptr     !=     null  )     {      // If key already exists return      if     (  ikey     ==     (  ptr  .  info  ))     {      document  .  write  (  'Duplicate Key !n'  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.      if     (  ikey      <     ptr  .  info  )     {      if     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      else      break  ;      }      // Moving on right subtree.      else     {      if     (  ptr  .  rthread     ==     false  )      ptr     =     ptr  .  right  ;      else      break  ;      }      }      // Create a new node   var     tmp     =     new     Node  ();      tmp  .  info     =     ikey  ;      tmp  .  lthread     =     true  ;      tmp  .  rthread     =     true  ;      if     (  par     ==     null  )     {      root     =     tmp  ;      tmp  .  left     =     null  ;      tmp  .  right     =     null  ;      }     else     if     (  ikey      <     (  par  .  info  ))     {      tmp  .  left     =     par  .  left  ;      tmp  .  right     =     par  ;      par  .  lthread     =     false  ;      par  .  left     =     tmp  ;      }     else     {      tmp  .  left     =     par  ;      tmp  .  right     =     par  .  right  ;      par  .  rthread     =     false  ;      par  .  right     =     tmp  ;      }      return     root  ;      }      // Returns inorder successor using rthread      function     inorderSuccessor  (  ptr  )     {      // If rthread is set we can quickly find      if     (  ptr  .  rthread     ==     true  )      return     ptr  .  right  ;      // Else return leftmost child of right subtree      ptr     =     ptr  .  right  ;      while     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      return     ptr  ;      }      // Printing the threaded tree      function     inorder  (  root  )     {      if     (  root     ==     null  )      document  .  write  (  'Tree is empty'  );      // Reach leftmost node   var     ptr     =     root  ;      while     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      // One by one print successors      while     (  ptr     !=     null  )     {      document  .  write  (  ptr  .  info  +  ' '  );      ptr     =     inorderSuccessor  (  ptr  );      }      }      // Driver Program       var     root     =     null  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );   // This code contributed by aashish1995    <  /script>   

Çıkış
5 10 13 14 16 17 20 30  

Zaman Karmaşıklığı: O(log N)

Uzay Karmaşıklığı: O(1) fazladan alan kullanılmadığı için.

 

Test Oluştur

En Makaleler

Kategori

Ilginç Haberler