İki Dışbükey Çokgen arasındaki teğetler

İki Dışbükey Çokgen arasındaki teğetler

İki dışbükey çokgen verildiğinde, bunları birbirine bağlayan alt ve üst teğetleri belirlemeyi hedefliyoruz. 

Aşağıdaki şekilde gösterildiği gibi T RL Ve T LR sırasıyla üst ve alt teğetleri temsil eder. 



İki Dışbükey Çokgenler Arasındaki Teğetler-01

Örnekler:  

Giriş: Birinci Çokgen : [[2 2] [3 3] [5 2] [4 0] [3 1]]
İkinci Çokgen : [[-1 0] [0 1] [1 0] [0 -2]].
Çıkış: Üst Teğet - çizgi birleştirme (01) ve (33)
Alt Teğet - çizgi birleştirme (0-2) ve (40)
Açıklama: Resimde yapı ve iki çokgeni birbirine bağlayan teğetler açıkça görülüyor

poli

Yaklaşmak: 

Üst teğeti bulmak için iki nokta seçerek başlıyoruz: çokgenin en sağ noktası A ve çokgenin en sol noktası B . Bu iki noktayı birleştiren doğruya şu ad verilir: 1. satır . Bu doğru çokgenden geçtiği için B (yani tam üstünde değil) saat yönünün tersine bir sonraki noktaya geçiyoruz B şekillendirme Astar 2 . Bu çizgi artık çokgenin üstünde B bu iyi. Ancak çokgeni geçiyor A bu yüzden bir sonraki noktaya geçiyoruz A saat yönünde oluşturma 3. satır . 3. satır hala çokgeni geçiyor A başka bir hamleye teşvik etmek 4. satır . 4. satır ancak çokgeni geçiyor B o yüzden devam ediyoruz 5. satır . Nihayet 5. satır her iki çokgeni de kesmez, bu da onu verilen çokgenler için doğru üst teğet yapar.

İki Dışbükey Çokgenler Arasındaki Teğetler-02

Alttaki teğeti bulmak için çokgenler boyunca ters yönde hareket etmemiz gerekir, yani eğer çizgi b çokgenini geçiyorsa bir sonraki saat yönünde, eğer çizgi a çokgenini geçiyorsa bir sonraki saat yönünün tersine hareket ederiz.

Üst teğet için algoritma:  

L a'nın en sağ noktası ile b'nin en sol noktasını birleştiren çizgi. while (L çokgenlerden herhangi birini keser) { while(L b'yi keser) L L' : b üzerindeki nokta yukarı doğru hareket eder. (L a'yı keserken) L L' : a'nın noktası yukarı doğru hareket eder. }

Alt teğet için algoritma:  

L a'nın en sağ noktası ile b'nin en sol noktasını birleştiren çizgi. while (L çokgenlerden herhangi birini keser) { while (L b'yi keser) L L' : b üzerindeki nokta aşağı doğru hareket eder. (L a'yı geçerken) L L' : a'nın üzerindeki nokta aşağı doğru hareket eder. }

Yukarıdaki kodun yalnızca üst tanjantı hesapladığını unutmayın. Alt teğeti bulmak için de benzer bir yaklaşım kullanılabilir.

CPP
   #include          using     namespace     std  ;   // Determines the quadrant of a point relative to origin   int     quad  (  vector   <  int  >     p  )     {      if     (  p  [  0  ]     >=     0     &&     p  [  1  ]     >=     0  )      return     1  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]     >=     0  )      return     2  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]      <=     0  )      return     3  ;      return     4  ;   }   // Returns the orientation of ordered triplet (a b c)   // 0 -> Collinear 1 -> Clockwise -1 -> Counterclockwise   int     orientation  (  vector   <  int  >     a       vector   <  int  >     b       vector   <  int  >     c  )     {      int     res     =     (  b  [  1  ]     -     a  [  1  ])     *     (  c  [  0  ]     -     b  [  0  ])     -      (  c  [  1  ]     -     b  [  1  ])     *     (  b  [  0  ]     -     a  [  0  ]);      if     (  res     ==     0  )      return     0  ;      if     (  res     >     0  )      return     1  ;      return     -1  ;   }   // Compare function to sort points counter-clockwise around center   bool     compare  (  vector   <  int  >     p1       vector   <  int  >     q1       vector   <  int  >     mid  )     {      vector   <  int  >     p     =     {  p1  [  0  ]     -     mid  [  0  ]     p1  [  1  ]     -     mid  [  1  ]};      vector   <  int  >     q     =     {  q1  [  0  ]     -     mid  [  0  ]     q1  [  1  ]     -     mid  [  1  ]};      int     one     =     quad  (  p  );      int     two     =     quad  (  q  );      if     (  one     !=     two  )      return     (  one      <     two  );      return     (  p  [  1  ]     *     q  [  0  ]      <     q  [  1  ]     *     p  [  0  ]);   }   // Sorts the polygon points counter-clockwise   vector   <  vector   <  int  >>     sortPoints  (  vector   <  vector   <  int  >>     polygon  )     {      vector   <  int  >     mid     =     {  0       0  };      int     n     =     polygon  .  size  ();      // Calculate center (centroid) of the polygon      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      mid  [  0  ]     +=     polygon  [  i  ][  0  ];      mid  [  1  ]     +=     polygon  [  i  ][  1  ];      polygon  [  i  ][  0  ]     *=     n  ;      polygon  [  i  ][  1  ]     *=     n  ;      }      // Sort points based on their angle from the center      sort  (  polygon  .  begin  ()     polygon  .  end  ()         [  mid  ](  vector   <  int  >     p1       vector   <  int  >     p2  )     {      return     compare  (  p1       p2       mid  );      });      // Divide back to original coordinates      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      polygon  [  i  ][  0  ]     /=     n  ;      polygon  [  i  ][  1  ]     /=     n  ;      }      return     polygon  ;   }   // Finds the upper tangent between two convex polygons a and b   // Returns two points forming the upper tangent   vector   <  vector   <  int  >>     findUpperTangent  (  vector   <  vector   <  int  >>     a        vector   <  vector   <  int  >>     b  )     {          int     n1     =     a  .  size  ()     n2     =     b  .  size  ();      // Find the rightmost point of polygon a and leftmost point of polygon b      int     maxa     =     INT_MIN  ;      for     (  auto  &     p     :     a  )      maxa     =     max  (  maxa       p  [  0  ]);      int     minb     =     INT_MAX  ;      for     (  auto  &     p     :     b  )      minb     =     min  (  minb       p  [  0  ]);      // Sort both polygons counter-clockwise      a     =     sortPoints  (  a  );      b     =     sortPoints  (  b  );      // Ensure polygon a is to the left of polygon b      if     (  minb      <     maxa  )      swap  (  a       b  );      n1     =     a  .  size  ();      n2     =     b  .  size  ();      // Find the rightmost point in a      int     ia     =     0       ib     =     0  ;      for     (  int     i     =     1  ;     i      <     n1  ;     i  ++  )      if     (  a  [  i  ][  0  ]     >     a  [  ia  ][  0  ])      ia     =     i  ;      // Find the leftmost point in b      for     (  int     i     =     1  ;     i      <     n2  ;     i  ++  )      if     (  b  [  i  ][  0  ]      <     b  [  ib  ][  0  ])      ib     =     i  ;      // Initialize starting points      int     inda     =     ia       indb     =     ib  ;      bool     done     =     false  ;      // Find upper tangent using orientation checks      while     (  !  done  )     {      done     =     true  ;      // Move to next point in a if necessary      while     (  orientation  (  b  [  indb  ]     a  [  inda  ]     a  [(  inda     +     1  )     %     n1  ])     >     0  )      inda     =     (  inda     +     1  )     %     n1  ;      // Move to previous point in b if necessary      while     (  orientation  (  a  [  inda  ]     b  [  indb  ]      b  [(  n2     +     indb     -     1  )     %     n2  ])      <     0  )     {      indb     =     (  n2     +     indb     -     1  )     %     n2  ;      done     =     false  ;      }      }      // Return the points forming the upper tangent      return     {  a  [  inda  ]     b  [  indb  ]};   }   // Main driver code   int     main  ()     {      vector   <  vector   <  int  >>     a     =     {{  2       2  }     {  3       1  }     {  3       3  }     {  5       2  }     {  4       0  }};      vector   <  vector   <  int  >>     b     =     {{  0       1  }     {  1       0  }     {  0       -2  }     {  -1       0  }};      vector   <  vector   <  int  >>     tangent     =     findUpperTangent  (  a       b  );      for  (  auto     it  :  tangent  ){      cout   < <  it  [  0  ]   < <  ' '   < <  it  [  1  ]   < <  '  n  '  ;      }      return     0  ;   }   
Java
   import     java.util.*  ;   class   GfG     {      // Determines the quadrant of a point      static     int     quad  (  int  []     p  )     {      if     (  p  [  0  ]     >=     0     &&     p  [  1  ]     >=     0  )      return     1  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]     >=     0  )      return     2  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]      <=     0  )      return     3  ;      return     4  ;      }      // Checks whether the line is crossing the polygon      static     int     orientation  (  int  []     a       int  []     b       int  []     c  )     {      int     res     =     (  b  [  1  ]     -     a  [  1  ]  )     *     (  c  [  0  ]     -     b  [  0  ]  )     -      (  c  [  1  ]     -     b  [  1  ]  )     *     (  b  [  0  ]     -     a  [  0  ]  );      if     (  res     ==     0  )      return     0  ;      if     (  res     >     0  )      return     1  ;      return     -  1  ;      }      // Compare function for sorting      static     class   PointComparator     implements     Comparator   <  int  []>     {      int  []     mid  ;      public     PointComparator  (  int  []     mid  )     {      this  .  mid     =     mid  ;      }      public     int     compare  (  int  []     p1       int  []     p2  )     {      int  []     p     =     {     p1  [  0  ]     -     mid  [  0  ]       p1  [  1  ]     -     mid  [  1  ]     };      int  []     q     =     {     p2  [  0  ]     -     mid  [  0  ]       p2  [  1  ]     -     mid  [  1  ]     };      int     one     =     quad  (  p  );      int     two     =     quad  (  q  );      if     (  one     !=     two  )      return     one     -     two  ;      return     p  [  1  ]     *     q  [  0  ]     -     q  [  1  ]     *     p  [  0  ]  ;      }      }      // Finds upper tangent of two polygons 'a' and 'b'      // represented as 2D arrays and stores the result      static     int  [][]     findUpperTangent  (  int  [][]     a       int  [][]     b  )     {      // n1 -> number of points in polygon a      // n2 -> number of points in polygon b      int     n1     =     a  .  length       n2     =     b  .  length  ;      int  []     mid     =     {     0       0     };      int     maxa     =     Integer  .  MIN_VALUE  ;      // Calculate centroid for polygon a and adjust points for scaling      for     (  int     i     =     0  ;     i      <     n1  ;     i  ++  )     {      maxa     =     Math  .  max  (  maxa       a  [  i  ][  0  ]  );      mid  [  0  ]     +=     a  [  i  ][  0  ]  ;      mid  [  1  ]     +=     a  [  i  ][  1  ]  ;      a  [  i  ][  0  ]     *=     n1  ;      a  [  i  ][  1  ]     *=     n1  ;      }      // Sorting the points in counter-clockwise order for polygon a      Arrays  .  sort  (  a       new     PointComparator  (  mid  ));      for     (  int     i     =     0  ;     i      <     n1  ;     i  ++  )     {      a  [  i  ][  0  ]     /=     n1  ;      a  [  i  ][  1  ]     /=     n1  ;      }      mid  [  0  ]     =     0  ;      mid  [  1  ]     =     0  ;      int     minb     =     Integer  .  MAX_VALUE  ;      // Calculate centroid for polygon b and adjust points for scaling      for     (  int     i     =     0  ;     i      <     n2  ;     i  ++  )     {      mid  [  0  ]     +=     b  [  i  ][  0  ]  ;      mid  [  1  ]     +=     b  [  i  ][  1  ]  ;      minb     =     Math  .  min  (  minb       b  [  i  ][  0  ]  );      b  [  i  ][  0  ]     *=     n2  ;      b  [  i  ][  1  ]     *=     n2  ;      }      // Sorting the points in counter-clockwise order for polygon b      Arrays  .  sort  (  b       new     PointComparator  (  mid  ));      for     (  int     i     =     0  ;     i      <     n2  ;     i  ++  )     {      b  [  i  ][  0  ]     /=     n2  ;      b  [  i  ][  1  ]     /=     n2  ;      }      // If a is to the right of b swap a and b      if     (  minb      <     maxa  )     {      int  [][]     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      n1     =     a  .  length  ;      n2     =     b  .  length  ;      }      // ia -> rightmost point of a      int     ia     =     0       ib     =     0  ;      for     (  int     i     =     1  ;     i      <     n1  ;     i  ++  )     {      if     (  a  [  i  ][  0  ]     >     a  [  ia  ][  0  ]  )      ia     =     i  ;      }      // ib -> leftmost point of b      for     (  int     i     =     1  ;     i      <     n2  ;     i  ++  )     {      if     (  b  [  i  ][  0  ]      <     b  [  ib  ][  0  ]  )      ib     =     i  ;      }      // Finding the upper tangent      int     inda     =     ia       indb     =     ib  ;      boolean     done     =     false  ;      while     (  !  done  )     {      done     =     true  ;      while     (  orientation  (  b  [  indb  ]       a  [  inda  ]       a  [  (  inda     +     1  )     %     n1  ]  )     >     0  )      inda     =     (  inda     +     1  )     %     n1  ;      while     (  orientation  (  a  [  inda  ]       b  [  indb  ]           b  [  (  n2     +     indb     -     1  )     %     n2  ]  )      <     0  )     {      indb     =     (  n2     +     indb     -     1  )     %     n2  ;      done     =     false  ;      }      }      // Returning the upper tangent as a 2D array      return     new     int  [][]     {      {     a  [  inda  ][  0  ]       a  [  inda  ][  1  ]     }      {     b  [  indb  ][  0  ]       b  [  indb  ][  1  ]     }      };      }      // Driver code      public     static     void     main  (  String  []     args  )     {          int  [][]     a     =     {{  2       2  }{  3       1  }{  3       3  }{  5       2  }{  4       0  }};      int  [][]     b     =     {{  0       1  }{  1       0  }{  0       -  2  }{  -  1       0  }};      // Get the upper tangent as a 2D array      int  [][]     upperTangent     =     findUpperTangent  (  a       b  );      // Store or use the result      System  .  out  .  println  (  upperTangent  [  0  ][  0  ]     +     ' '     +     upperTangent  [  0  ][  1  ]  );      System  .  out  .  println  (  upperTangent  [  1  ][  0  ]     +     ' '     +     upperTangent  [  1  ][  1  ]  );      }   }   
Python
   from   functools   import   cmp_to_key   def   quad  (  p  ):   if   p  [  0  ]   >=   0   and   p  [  1  ]   >=   0  :   return   1   if   p  [  0  ]    <=   0   and   p  [  1  ]   >=   0  :   return   2   if   p  [  0  ]    <=   0   and   p  [  1  ]    <=   0  :   return   3   return   4   def   orientation  (  a     b     c  ):   res   =   (  b  [  1  ]   -   a  [  1  ])   *   (  c  [  0  ]   -   b  [  0  ])   -   (  c  [  1  ]   -   b  [  1  ])   *   (  b  [  0  ]   -   a  [  0  ])   if   res   ==   0  :   return   0   if   res   >   0  :   return   1   return   -  1   def   compare  (  mid  ):   def   cmp  (  p1     q1  ):   p   =   [  p1  [  0  ]   -   mid  [  0  ]   p1  [  1  ]   -   mid  [  1  ]]   q   =   [  q1  [  0  ]   -   mid  [  0  ]   q1  [  1  ]   -   mid  [  1  ]]   one   =   quad  (  p  )   two   =   quad  (  q  )   if   one   !=   two  :   return   one   -   two   if   p  [  1  ]   *   q  [  0  ]    <   q  [  1  ]   *   p  [  0  ]:   return   -  1   return   1   return   cmp   def   findUpperTangent  (  a     b  ):   n1     n2   =   len  (  a  )   len  (  b  )   mid_a   =   [  0     0  ]   maxa   =   float  (  '-inf'  )   for   i   in   range  (  n1  ):   maxa   =   max  (  maxa     a  [  i  ][  0  ])   mid_a  [  0  ]   +=   a  [  i  ][  0  ]   mid_a  [  1  ]   +=   a  [  i  ][  1  ]   a   =   sorted  (  a     key  =  cmp_to_key  (  compare  (  mid_a  )))   mid_b   =   [  0     0  ]   minb   =   float  (  'inf'  )   for   i   in   range  (  n2  ):   minb   =   min  (  minb     b  [  i  ][  0  ])   mid_b  [  0  ]   +=   b  [  i  ][  0  ]   mid_b  [  1  ]   +=   b  [  i  ][  1  ]   b   =   sorted  (  b     key  =  cmp_to_key  (  compare  (  mid_b  )))   if   minb    <   maxa  :   a     b   =   b     a   n1     n2   =   n2     n1   ia   =   0   for   i   in   range  (  1     n1  ):   if   a  [  i  ][  0  ]   >   a  [  ia  ][  0  ]:   ia   =   i   ib   =   0   for   i   in   range  (  1     n2  ):   if   b  [  i  ][  0  ]    <   b  [  ib  ][  0  ]:   ib   =   i   inda     indb   =   ia     ib   done   =   False   while   not   done  :   done   =   True   while   orientation  (  b  [  indb  ]   a  [  inda  ]   a  [(  inda   +   1  )   %   n1  ])   >   0  :   inda   =   (  inda   +   1  )   %   n1   while   orientation  (  a  [  inda  ]   b  [  indb  ]   b  [(  n2   +   indb   -   1  )   %   n2  ])    <   0  :   indb   =   (  n2   +   indb   -   1  )   %   n2   done   =   False   # return integer coordinates   return   [[  int  (  a  [  inda  ][  0  ])   int  (  a  [  inda  ][  1  ])]   [  int  (  b  [  indb  ][  0  ])   int  (  b  [  indb  ][  1  ])]]   # Driver Code   if   __name__   ==   '__main__'  :   a   =   [   [  2     2  ]   [  3     1  ]   [  3     3  ]   [  5     2  ]   [  4     0  ]   ]   b   =   [   [  0     1  ]   [  1     0  ]   [  0     -  2  ]   [  -  1     0  ]   ]   upperTangent   =   findUpperTangent  (  a     b  )   for   point   in   upperTangent  :   print  (  f  '  {  point  [  0  ]  }     {  point  [  1  ]  }  '  )   
C#
   using     System  ;   public     class     UpperTangentFinder   {      static     int     Quad  (  int     x       int     y  )      {      if     (  x     >=     0     &&     y     >=     0  )     return     1  ;      if     (  x      <=     0     &&     y     >=     0  )     return     2  ;      if     (  x      <=     0     &&     y      <=     0  )     return     3  ;      return     4  ;      }      static     int     Orientation  (  int  []     a       int  []     b       int  []     c  )      {      int     res     =     (  b  [  1  ]     -     a  [  1  ])     *     (  c  [  0  ]     -     b  [  0  ])     -         (  c  [  1  ]     -     b  [  1  ])     *     (  b  [  0  ]     -     a  [  0  ]);      if     (  res     ==     0  )     return     0  ;      return     res     >     0     ?     1     :     -  1  ;      }      static     bool     Compare  (  int  []     p1       int  []     p2       int  []     mid  )      {      int  []     p     =     {     p1  [  0  ]     -     mid  [  0  ]     p1  [  1  ]     -     mid  [  1  ]     };      int  []     q     =     {     p2  [  0  ]     -     mid  [  0  ]     p2  [  1  ]     -     mid  [  1  ]     };      int     quadP     =     Quad  (  p  [  0  ]     p  [  1  ]);      int     quadQ     =     Quad  (  q  [  0  ]     q  [  1  ]);      if     (  quadP     !=     quadQ  )      return     quadP      <     quadQ  ;      return     (  p  [  1  ]     *     q  [  0  ])      <     (  q  [  1  ]     *     p  [  0  ]);      }      static     int  []     SortPoints  (  int  []     polygon  )      {      int     n     =     polygon  .  GetLength  (  0  );      int  []     mid     =     {     0       0     };      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      mid  [  0  ]     +=     polygon  [  i       0  ];      mid  [  1  ]     +=     polygon  [  i       1  ];      polygon  [  i       0  ]     *=     n  ;      polygon  [  i       1  ]     *=     n  ;      }      for     (  int     i     =     0  ;     i      <     n     -     1  ;     i  ++  )      {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )      {      int  []     p1     =     {     polygon  [  i       0  ]     polygon  [  i       1  ]     };      int  []     p2     =     {     polygon  [  j       0  ]     polygon  [  j       1  ]     };      if     (  !  Compare  (  p1       p2       mid  ))      {      int     tempX     =     polygon  [  i       0  ]     tempY     =     polygon  [  i       1  ];      polygon  [  i       0  ]     =     polygon  [  j       0  ];      polygon  [  i       1  ]     =     polygon  [  j       1  ];      polygon  [  j       0  ]     =     tempX  ;      polygon  [  j       1  ]     =     tempY  ;      }      }      }      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      polygon  [  i       0  ]     /=     n  ;      polygon  [  i       1  ]     /=     n  ;      }      return     polygon  ;      }      static     int  []     FindUpperTangent  (  int  []     a       int  []     b  )      {      int     n1     =     a  .  GetLength  (  0  );      int     n2     =     b  .  GetLength  (  0  );      int     maxa     =     int  .  MinValue  ;      for     (  int     i     =     0  ;     i      <     n1  ;     i  ++  )      maxa     =     Math  .  Max  (  maxa       a  [  i       0  ]);      int     minb     =     int  .  MaxValue  ;      for     (  int     i     =     0  ;     i      <     n2  ;     i  ++  )      minb     =     Math  .  Min  (  minb       b  [  i       0  ]);      a     =     SortPoints  (  a  );      b     =     SortPoints  (  b  );      if     (  minb      <     maxa  )      {      int  []     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      n1     =     a  .  GetLength  (  0  );      n2     =     b  .  GetLength  (  0  );      }      int     ia     =     0       ib     =     0  ;      for     (  int     i     =     1  ;     i      <     n1  ;     i  ++  )      if     (  a  [  i       0  ]     >     a  [  ia       0  ])      ia     =     i  ;      for     (  int     i     =     1  ;     i      <     n2  ;     i  ++  )      if     (  b  [  i       0  ]      <     b  [  ib       0  ])      ib     =     i  ;      int     inda     =     ia       indb     =     ib  ;      bool     done     =     false  ;      while     (  !  done  )      {      done     =     true  ;      while     (  Orientation  (      new     int  []     {     b  [  indb       0  ]     b  [  indb       1  ]     }      new     int  []     {     a  [  inda       0  ]     a  [  inda       1  ]     }      new     int  []     {     a  [(  inda     +     1  )     %     n1       0  ]      a  [(  inda     +     1  )     %     n1       1  ]     })     >     0  ){      inda     =     (  inda     +     1  )     %     n1  ;      }      while     (  Orientation  (      new     int  []     {     a  [  inda       0  ]     a  [  inda       1  ]     }      new     int  []     {     b  [  indb       0  ]     b  [  indb       1  ]     }      new     int  []     {     b  [(  n2     +     indb     -     1  )     %     n2       0  ]         b  [(  n2     +     indb     -     1  )     %     n2       1  ]     })      <     0  ){          indb     =     (  n2     +     indb     -     1  )     %     n2  ;      done     =     false  ;      }      }      int  []     result     =     new     int  [  2       2  ];      result  [  0       0  ]     =     a  [  inda       0  ];      result  [  0       1  ]     =     a  [  inda       1  ];      result  [  1       0  ]     =     b  [  indb       0  ];      result  [  1       1  ]     =     b  [  indb       1  ];      return     result  ;      }      public     static     void     Main  (  string  []     args  )      {      int  []     a     =     new     int  []     {      {  2       2  }      {  3       1  }      {  3       3  }      {  5       2  }      {  4       0  }      };      int  []     b     =     new     int  []     {      {  0       1  }      {  1       0  }      {  0       -  2  }      {  -  1       0  }      };      int  []     tangent     =     FindUpperTangent  (  a       b  );      for     (  int     i     =     0  ;     i      <     2  ;     i  ++  )      {      Console  .  WriteLine  (  tangent  [  i       0  ]     +     ' '     +     tangent  [  i       1  ]);      }      }   }   
JavaScript
   // Determine the quadrant of a point   function     quad  (  p  )     {      if     (  p  [  0  ]     >=     0     &&     p  [  1  ]     >=     0  )     return     1  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]     >=     0  )     return     2  ;      if     (  p  [  0  ]      <=     0     &&     p  [  1  ]      <=     0  )     return     3  ;      return     4  ;   }   // Find orientation of triplet (a b c)   function     orientation  (  a       b       c  )     {      let     res     =     (  b  [  1  ]     -     a  [  1  ])     *     (  c  [  0  ]     -     b  [  0  ])     -     (  c  [  1  ]     -     b  [  1  ])     *     (  b  [  0  ]     -     a  [  0  ]);      if     (  res     ===     0  )     return     0  ;      return     res     >     0     ?     1     :     -  1  ;   }   // Compare two points based on mid   function     compare  (  p1       p2       mid  )     {      let     p     =     [  p1  [  0  ]     -     mid  [  0  ]     p1  [  1  ]     -     mid  [  1  ]];      let     q     =     [  p2  [  0  ]     -     mid  [  0  ]     p2  [  1  ]     -     mid  [  1  ]];      let     quadP     =     quad  (  p  );      let     quadQ     =     quad  (  q  );      if     (  quadP     !==     quadQ  )      return     quadP     -     quadQ  ;      return     (  p  [  1  ]     *     q  [  0  ])     -     (  q  [  1  ]     *     p  [  0  ]);   }   // Sort polygon points counter-clockwise   function     sortPoints  (  polygon  )     {      let     n     =     polygon  .  length  ;      let     mid     =     [  0       0  ];      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      mid  [  0  ]     +=     polygon  [  i  ][  0  ];      mid  [  1  ]     +=     polygon  [  i  ][  1  ];      polygon  [  i  ][  0  ]     *=     n  ;      polygon  [  i  ][  1  ]     *=     n  ;      }      polygon  .  sort  ((  p1       p2  )     =>     compare  (  p1       p2       mid  ));      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      polygon  [  i  ][  0  ]     =     Math  .  floor  (  polygon  [  i  ][  0  ]     /     n  );      polygon  [  i  ][  1  ]     =     Math  .  floor  (  polygon  [  i  ][  1  ]     /     n  );      }      return     polygon  ;   }   // Find upper tangent between two convex polygons   function     findUpperTangent  (  a       b  )     {      let     n1     =     a  .  length  ;      let     n2     =     b  .  length  ;      let     maxa     =     -  Infinity  ;      for     (  let     i     =     0  ;     i      <     n1  ;     i  ++  )      maxa     =     Math  .  max  (  maxa       a  [  i  ][  0  ]);      let     minb     =     Infinity  ;      for     (  let     i     =     0  ;     i      <     n2  ;     i  ++  )      minb     =     Math  .  min  (  minb       b  [  i  ][  0  ]);      a     =     sortPoints  (  a  );      b     =     sortPoints  (  b  );      if     (  minb      <     maxa  )     {      let     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      n1     =     a  .  length  ;      n2     =     b  .  length  ;      }      let     ia     =     0       ib     =     0  ;      for     (  let     i     =     1  ;     i      <     n1  ;     i  ++  )      if     (  a  [  i  ][  0  ]     >     a  [  ia  ][  0  ])      ia     =     i  ;      for     (  let     i     =     1  ;     i      <     n2  ;     i  ++  )      if     (  b  [  i  ][  0  ]      <     b  [  ib  ][  0  ])      ib     =     i  ;      let     inda     =     ia       indb     =     ib  ;      let     done     =     false  ;      while     (  !  done  )     {      done     =     true  ;      while     (  orientation  (  b  [  indb  ]     a  [  inda  ]     a  [(  inda     +     1  )     %     n1  ])     >     0  )      inda     =     (  inda     +     1  )     %     n1  ;      while     (  orientation  (  a  [  inda  ]     b  [  indb  ]     b  [(  n2     +     indb     -     1  )     %     n2  ])      <     0  )     {      indb     =     (  n2     +     indb     -     1  )     %     n2  ;      done     =     false  ;      }      }      return     [  a  [  inda  ]     b  [  indb  ]];   }   // Driver code   let     a     =     [[  2       2  ][  3       1  ][  3       3  ][  5       2  ][  4       0  ]];   let     b     =     [[  0       1  ][  1       0  ][  0       -  2  ][  -  1       0  ]];   let     tangent     =     findUpperTangent  (  a       b  );   for     (  let     point     of     tangent  )     {      console  .  log  (  point  [  0  ]     +     ' '     +     point  [  1  ]);   }   

Çıkış
upper tangent (01) (33)  

Zaman Karmaşıklığı: O(n1 log (n1) + n2 log(n2)) 
Yardımcı Alan: Ç(1)


Test Oluştur

En Makaleler

Kategori

Ilginç Haberler