Resande säljare problem med filial och bunden

Resande säljare problem med filial och bunden

Med tanke på en uppsättning städer och avstånd mellan varje par städer är problemet att hitta den kortast möjliga turnén som besöker varje stad exakt en gång och återvänder till utgångspunkten.
 

Euler1


Tänk till exempel på grafen som visas i figuren på höger sida. En TSP-turné i grafen är 0-1-3-2-0. Kostnaden för turnén är 10+25+30+15 vilket är 80.
Vi har diskuterat följande lösningar 
1) Naiv och dynamisk programmering  
2) Ungefärlig lösning med MST
  
 
Gren och bunden lösning  
Som framgår av de tidigare artiklarna i gren och bunden metod för aktuell nod i träd beräknar vi en bunden till bästa möjliga lösning som vi kan få om vi ner denna nod. Om den bundna på bästa möjliga lösning i sig är sämre än nuvarande bästa (bäst beräknade hittills) ignorerar vi undertreet som är förankrat med noden. 
Observera att kostnaden genom en nod innehåller två kostnader. 
1) Kostnad för att nå noden från roten (när vi når en nod har vi denna kostnad beräknad) 
2) Kostnader för att nå ett svar från nuvarande nod till ett blad (vi beräknar en gräns för denna kostnad för att bestämma om du ska ignorera undertråd med denna nod eller inte).
 

  • I fall av en maximeringsproblem En övre gräns berättar för oss den maximala möjliga lösningen om vi följer den givna noden. Till exempel i 0/1 ryggsäck vi använde girig tillvägagångssätt för att hitta en övre gräns .
  • I fall av en minimeringsproblem En nedre gräns berättar för oss den minsta möjliga lösningen om vi följer den givna noden. Till exempel i Jobbuppdragsproblem Vi får en lägre gräns genom att tilldela en arbetare minst kostnadsarbete.


I gren och bunden är den utmanande delen att räkna ut ett sätt att beräkna en bunden till bästa möjliga lösning. Nedan är en idé som används för att beräkna gränser för resande säljarproblem.
Kostnaden för alla turnéer kan skrivas enligt nedan.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V 


Tänk till exempel på ovanstående graf. Nedan finns lägsta kostnad två kanter intill varje nod. 
 

Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example. 


Nu har vi en idé om beräkning av nedre gräns. Låt oss se hur du tillämpar IT State Space Search Tree. Vi börjar räkna upp alla möjliga noder (helst i lexikografisk ordning)
1. Rotnoden: Utan förlust av generalitet antar vi att vi börjar på Vertex '0' för vilken den nedre gränsen har beräknats ovan.
Hantera nivå 2: Nästa nivå räknar upp alla möjliga vertikaler vi kan gå till (med tanke på att i alla vägar måste ett toppunkt endast inträffa en gång) som är 1 2 3 ... n (Observera att grafen är klar). Tänk på att vi beräknar för Vertex 1 sedan vi flyttade från 0 till 1 vår turné har nu inkluderat kanten 0-1. Detta gör att vi kan göra nödvändiga förändringar i rotens nedre gräns. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1) 


Hur fungerar det? För att inkludera kant 0-1 lägger vi kantkostnaden på 0-1 och subtrahera en kantvikt så att den nedre gränsen förblir så snäv som möjligt, vilket skulle vara summan av minsta kanter på 0 och 1 dividerat med 2. Klart kanten subtraheras inte kan vara mindre än detta.
Hantera andra nivåer: När vi går vidare till nästa nivå räknar vi igen alla möjliga toppar. För ovanstående fall som går vidare efter 1 kolla in för 2 3 4 ... n. 
Tänk på nedre gränsen för 2 när vi flyttade från 1 till 1 vi inkluderar kanten 1-2 till turnén och ändra den nya nedre gränsen för denna nod.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2) 


Obs: Den enda förändringen i formeln är att den här gången har vi inkluderat den andra minsta kantkostnaden för 1 eftersom minsta kantkostnaden redan har subtraherats på tidigare nivå. 
 

C++
   // C++ program to solve Traveling Salesman Problem   // using Branch and Bound.   #include          using     namespace     std  ;   const     int     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.   int     final_path  [  N  +  1  ];   // visited[] keeps track of the already visited nodes   // in a particular path   bool     visited  [  N  ];   // Stores the final minimum weight of shortest tour.   int     final_res     =     INT_MAX  ;   // Function to copy temporary solution to   // the final solution   void     copyToFinal  (  int     curr_path  [])   {      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   int     firstMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     min     =     INT_MAX  ;      for     (  int     k  =  0  ;     k   <  N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]   <  min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ];      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   int     secondMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     first     =     INT_MAX       second     =     INT_MAX  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ];      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]   void     TSPRec  (  int     adj  [  N  ][  N  ]     int     curr_bound       int     curr_weight        int     level       int     curr_path  [])   {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level  ==  N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level  -1  ]][  i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level  +  1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -1  ]][  i  ];      curr_bound     =     temp  ;      // Also reset the visited array      memset  (  visited       false       sizeof  (  visited  ));      for     (  int     j  =  0  ;     j   <=  level  -1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }   }   // This function sets up final_path[]    void     TSP  (  int     adj  [  N  ][  N  ])   {      int     curr_path  [  N  +  1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      memset  (  curr_path       -1       sizeof  (  curr_path  ));      memset  (  visited       0       sizeof  (  curr_path  ));      // Compute initial bound      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  &  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );   }   // Driver code   int     main  ()   {      //Adjacency matrix for the given graph      int     adj  [  N  ][  N  ]     =     {     {  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }      };      TSP  (  adj  );      printf  (  'Minimum cost : %d  n  '       final_res  );      printf  (  'Path Taken : '  );      for     (  int     i  =  0  ;     i   <=  N  ;     i  ++  )      printf  (  '%d '       final_path  [  i  ]);      return     0  ;   }   
Java
   // Java program to solve Traveling Salesman Problem   // using Branch and Bound.   import     java.util.*  ;   class   GFG   {          static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int     final_path  []     =     new     int  [  N     +     1  ]  ;      // visited[] keeps track of the already visited nodes      // in a particular path      static     boolean     visited  []     =     new     boolean  [  N  ]  ;      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Integer  .  MAX_VALUE  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int     curr_path  []  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ]  ;      final_path  [  N  ]     =     curr_path  [  0  ]  ;      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int     adj  [][]       int     i  )      {      int     min     =     Integer  .  MAX_VALUE  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ]  ;      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int     adj  [][]       int     i  )      {      int     first     =     Integer  .  MAX_VALUE       second     =     Integer  .  MAX_VALUE  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ]  ;      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ]  ;      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored which      // would later be copied to final_path[]      static     void     TSPRec  (  int     adj  [][]       int     curr_bound       int     curr_weight        int     level       int     curr_path  []  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -  1  ]][  curr_path  [  0  ]]  ;          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -  1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ]  ;      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level     +     1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -  1  ]][  i  ]  ;      curr_bound     =     temp  ;      // Also reset the visited array      Arrays  .  fill  (  visited    false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]       static     void     TSP  (  int     adj  [][]  )      {      int     curr_path  []     =     new     int  [  N     +     1  ]  ;      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Arrays  .  fill  (  curr_path       -  1  );      Arrays  .  fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  ==  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }          // Driver code      public     static     void     main  (  String  []     args  )         {      //Adjacency matrix for the given graph      int     adj  [][]     =     {{  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }     };      TSP  (  adj  );      System  .  out  .  printf  (  'Minimum cost : %dn'       final_res  );      System  .  out  .  printf  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )         {      System  .  out  .  printf  (  '%d '       final_path  [  i  ]  );      }      }   }   /* This code contributed by PrinciRaj1992 */   
Python3
   # Python3 program to solve    # Traveling Salesman Problem using    # Branch and Bound.   import   math   maxsize   =   float  (  'inf'  )   # Function to copy temporary solution   # to the final solution   def   copyToFinal  (  curr_path  ):   final_path  [:  N   +   1  ]   =   curr_path  [:]   final_path  [  N  ]   =   curr_path  [  0  ]   # Function to find the minimum edge cost    # having an end at the vertex i   def   firstMin  (  adj     i  ):   min   =   maxsize   for   k   in   range  (  N  ):   if   adj  [  i  ][  k  ]    <   min   and   i   !=   k  :   min   =   adj  [  i  ][  k  ]   return   min   # function to find the second minimum edge    # cost having an end at the vertex i   def   secondMin  (  adj     i  ):   first     second   =   maxsize     maxsize   for   j   in   range  (  N  ):   if   i   ==   j  :   continue   if   adj  [  i  ][  j  ]    <=   first  :   second   =   first   first   =   adj  [  i  ][  j  ]   elif  (  adj  [  i  ][  j  ]    <=   second   and   adj  [  i  ][  j  ]   !=   first  ):   second   =   adj  [  i  ][  j  ]   return   second   # function that takes as arguments:   # curr_bound -> lower bound of the root node   # curr_weight-> stores the weight of the path so far   # level-> current level while moving   # in the search space tree   # curr_path[] -> where the solution is being stored   # which would later be copied to final_path[]   def   TSPRec  (  adj     curr_bound     curr_weight     level     curr_path     visited  ):   global   final_res   # base case is when we have reached level N    # which means we have covered all the nodes once   if   level   ==   N  :   # check if there is an edge from   # last vertex in path back to the first vertex   if   adj  [  curr_path  [  level   -   1  ]][  curr_path  [  0  ]]   !=   0  :   # curr_res has the total weight   # of the solution we got   curr_res   =   curr_weight   +   adj  [  curr_path  [  level   -   1  ]]   [  curr_path  [  0  ]]   if   curr_res    <   final_res  :   copyToFinal  (  curr_path  )   final_res   =   curr_res   return   # for any other level iterate for all vertices   # to build the search space tree recursively   for   i   in   range  (  N  ):   # Consider next vertex if it is not same    # (diagonal entry in adjacency matrix and    # not visited already)   if   (  adj  [  curr_path  [  level  -  1  ]][  i  ]   !=   0   and   visited  [  i  ]   ==   False  ):   temp   =   curr_bound   curr_weight   +=   adj  [  curr_path  [  level   -   1  ]][  i  ]   # different computation of curr_bound    # for level 2 from the other levels   if   level   ==   1  :   curr_bound   -=   ((  firstMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   else  :   curr_bound   -=   ((  secondMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   # curr_bound + curr_weight is the actual lower bound    # for the node that we have arrived on.   # If current lower bound  < final_res    # we need to explore the node further   if   curr_bound   +   curr_weight    <   final_res  :   curr_path  [  level  ]   =   i   visited  [  i  ]   =   True   # call TSPRec for the next level   TSPRec  (  adj     curr_bound     curr_weight     level   +   1     curr_path     visited  )   # Else we have to prune the node by resetting    # all changes to curr_weight and curr_bound   curr_weight   -=   adj  [  curr_path  [  level   -   1  ]][  i  ]   curr_bound   =   temp   # Also reset the visited array   visited   =   [  False  ]   *   len  (  visited  )   for   j   in   range  (  level  ):   if   curr_path  [  j  ]   !=   -  1  :   visited  [  curr_path  [  j  ]]   =   True   # This function sets up final_path   def   TSP  (  adj  ):   # Calculate initial lower bound for the root node    # using the formula 1/2 * (sum of first min +    # second min) for all edges. Also initialize the    # curr_path and visited array   curr_bound   =   0   curr_path   =   [  -  1  ]   *   (  N   +   1  )   visited   =   [  False  ]   *   N   # Compute initial bound   for   i   in   range  (  N  ):   curr_bound   +=   (  firstMin  (  adj     i  )   +   secondMin  (  adj     i  ))   # Rounding off the lower bound to an integer   curr_bound   =   math  .  ceil  (  curr_bound   /   2  )   # We start at vertex 1 so the first vertex    # in curr_path[] is 0   visited  [  0  ]   =   True   curr_path  [  0  ]   =   0   # Call to TSPRec for curr_weight    # equal to 0 and level 1   TSPRec  (  adj     curr_bound     0     1     curr_path     visited  )   # Driver code   # Adjacency matrix for the given graph   adj   =   [[  0     10     15     20  ]   [  10     0     35     25  ]   [  15     35     0     30  ]   [  20     25     30     0  ]]   N   =   4   # final_path[] stores the final solution    # i.e. the // path of the salesman.   final_path   =   [  None  ]   *   (  N   +   1  )   # visited[] keeps track of the already   # visited nodes in a particular path   visited   =   [  False  ]   *   N   # Stores the final minimum weight   # of shortest tour.   final_res   =   maxsize   TSP  (  adj  )   print  (  'Minimum cost :'     final_res  )   print  (  'Path Taken : '     end   =   ' '  )   for   i   in   range  (  N   +   1  ):   print  (  final_path  [  i  ]   end   =   ' '  )   # This code is contributed by ng24_7   
C#
   // C# program to solve Traveling Salesman Problem   // using Branch and Bound.   using     System  ;   public     class     GFG     {      static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int  []     final_path     =     new     int  [  N     +     1  ];      // visited[] keeps track of the already visited nodes      // in a particular path      static     bool  []     visited     =     new     bool  [  N  ];      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Int32  .  MaxValue  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int  []     curr_path  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int  [     ]     adj       int     i  )      {      int     min     =     Int32  .  MaxValue  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i       k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i       k  ];      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int  [     ]     adj       int     i  )      {      int     first     =     Int32  .  MaxValue       second     =     Int32  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i       j  ]      <=     first  )     {      second     =     first  ;      first     =     adj  [  i       j  ];      }      else     if     (  adj  [  i       j  ]      <=     second      &&     adj  [  i       j  ]     !=     first  )      second     =     adj  [  i       j  ];      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored      // which      // would later be copied to final_path[]      static     void     TSPRec  (  int  [     ]     adj       int     curr_bound        int     curr_weight       int     level        int  []     curr_path  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )     {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]     curr_path  [  0  ]]      !=     0  )     {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight      +     adj  [  curr_path  [  level     -     1  ]      curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )     {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      // Consider next vertex if it is not same      // (diagonal entry in adjacency matrix and not      // visited already)      if     (  adj  [  curr_path  [  level     -     1  ]     i  ]     !=     0      &&     visited  [  i  ]     ==     false  )     {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]     i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  )      curr_bound      -=     ((  firstMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      else      curr_bound      -=     ((  secondMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      // curr_bound + curr_weight is the actual      // lower bound for the node that we have      // arrived on If current lower bound  <      // final_res we need to explore the node      // further      if     (  curr_bound     +     curr_weight      <     final_res  )     {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight        level     +     1       curr_path  );      }      // Else we have to prune the node by      // resetting all changes to curr_weight and      // curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]     i  ];      curr_bound     =     temp  ;      // Also reset the visited array      Array  .  Fill  (  visited       false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]      static     void     TSP  (  int  [     ]     adj  )      {      int  []     curr_path     =     new     int  [  N     +     1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Array  .  Fill  (  curr_path       -  1  );      Array  .  Fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound      +=     (  firstMin  (  adj       i  )     +     secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound     ==     1  )     ?     curr_bound     /     2     +     1      :     curr_bound     /     2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }      // Driver code      static     public     void     Main  ()      {      // Adjacency matrix for the given graph      int  [     ]     adj     =     {     {     0       10       15       20     }      {     10       0       35       25     }      {     15       35       0       30     }      {     20       25       30       0     }     };      TSP  (  adj  );      Console  .  WriteLine  (  'Minimum cost : '     +     final_res  );      Console  .  Write  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )     {      Console  .  Write  (  final_path  [  i  ]     +     ' '  );      }      }   }   // This code is contributed by Rohit Pradhan   
JavaScript
   const     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.      let     final_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // visited[] keeps track of the already visited nodes   // in a particular path      let     visited     =     Array     (  N  ).  fill     (  false  );   // Stores the final minimum weight of shortest tour.      let     final_res     =     Number  .  MAX_SAFE_INTEGER  ;   // Function to copy temporary solution to   // the final solution   function     copyToFinal     (  curr_path  ){      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      final_path  [  i  ]     =     curr_path  [  i  ];      }      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   function     firstMin     (  adj       i  ){   let     min     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     k     =     0  ;     k      <     N  ;     k  ++  ){      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !==     k  ){      min     =     adj  [  i  ][  k  ];      }      }      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   function     secondMin     (  adj       i  ){      let     first     =     Number  .  MAX_SAFE_INTEGER  ;      let     second     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     j     =     0  ;     j      <     N  ;     j  ++  ){      if     (  i     ==     j  ){      continue  ;      }      if     (  adj  [  i  ][  j  ]      <=     first  ){      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&     adj  [  i  ][  j  ]     !==     first  ){      second     =     adj  [  i  ][  j  ];      }      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]      function     TSPRec     (  adj       curr_bound       curr_weight       level       curr_path  )   {       // base case is when we have reached level N which   // means we have covered all the nodes once      if     (  level     ==     N  )      {         // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !==     0  )      {          // curr_res has the total weight of the      // solution we got      let     curr_res     =      curr_weight     +     adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]];          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal     (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;       }          // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){          // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level     -     1  ]][  i  ]     !==     0     &&     !  visited  [  i  ]){          let     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ];          // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  ){      curr_bound     -=     (  firstMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }      else      {      curr_bound     -=     (  secondMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }          // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  ){      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;         // call TSPRec for the next level      TSPRec     (  adj       curr_bound       curr_weight       level     +     1       curr_path  );       }          // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]][  i  ];      curr_bound     =     temp  ;          // Also reset the visited array      visited  .  fill     (  false  )         for     (  var     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;       }       }   }      // This function sets up final_path[]       function     TSP     (  adj  )   {       let     curr_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // Calculate initial lower bound for the root node   // using the formula 1/2 * (sum of first min +   // second min) for all edges.   // Also initialize the curr_path and visited array      let     curr_bound     =     0  ;       visited  .  fill     (  false  );          // compute initial bound      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      curr_bound     +=     firstMin     (  adj       i  )     +     secondMin     (  adj       i  );          }          // Rounding off the lower bound to an integer      curr_bound     =     curr_bound     ==     1     ?     (  curr_bound     /     2  )     +     1     :     (  curr_bound     /     2  );       // We start at vertex 1 so the first vertex   // in curr_path[] is 0      visited  [  0  ]     =     true  ;       curr_path  [  0  ]     =     0  ;       // Call to TSPRec for curr_weight equal to   // 0 and level 1      TSPRec     (  adj       curr_bound       0       1       curr_path  );   }   //Adjacency matrix for the given graph      let     adj     =  [[  0       10       15       20  ]         [  10       0       35       25  ]      [  15       35       0       30  ]      [  20       25       30       0  ]];       TSP     (  adj  );       console  .  log     (  `Minimum cost:  ${  final_res  }  `  );   console  .  log     (  `Path Taken:  ${  final_path  .  join     (  ' '  )  }  `  );      // This code is contributed by anskalyan3.   

Output:  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0  

Avrundningen görs i denna kodrad:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2);  

I gren och bunden TSP -algoritm beräknar vi en lägre gräns för den totala kostnaden för den optimala lösningen genom att lägga till minsta kantkostnader för varje toppunkt och sedan dela med två. Men denna nedre gräns kanske inte är ett heltal. För att få ett heltal nedre gräns kan vi använda avrundning.

I ovanstående kod har Curr_Bound -variabeln den nuvarande nedre gränsen för den totala kostnaden för den optimala lösningen. När vi besöker ett nytt toppunkt på nivånivå beräknar vi en ny nedre bunden New_Bound genom att ta summan av minsta kantkostnader för det nya toppunktet och dess två närmaste grannar. Vi uppdaterar sedan Curr_Bound -variabeln genom att runda New_Bound till närmaste heltal.

Om nivån är 1 rundar vi oss ner till närmaste heltal. Detta beror på att vi bara har besökt ett toppunkt hittills och vi vill vara konservativa i vår uppskattning av den totala kostnaden för den optimala lösningen. Om nivån är större än 1 använder vi en mer aggressiv avrundningsstrategi som tar hänsyn till det faktum att vi redan har besökt vissa vertikaler och därför kan göra en mer exakt uppskattning av den totala kostnaden för den optimala lösningen.


Tidskomplexitet: Det värsta fallet komplexitet i gren och bundet förblir samma som den för brute -styrkan tydligt eftersom vi i värsta fall aldrig får en chans att beskära en nod. I praktiken presterar det mycket bra beroende på TSP: s olika instans. Komplexiteten beror också på valet av avgränsningsfunktionen eftersom det är de som bestämmer hur många noder som ska beskäras.
Referenser:  
http://lcm.csa.iisc.ernet.in/dsa/node187.html