Placering av ett element efter stabil sortering

Placering av ett element efter stabil sortering
Prova det på GfG Practice #practiceLinkDiv { display: ingen !viktigt; }

Med tanke på en array av heltal som kan innehålla dubbletter av element som ett element i denna array ges till oss måste vi berätta den slutliga positionen för detta element i arrayen om en stabil sorteringsalgoritm tillämpas.

Exempel:  

Input : arr[] = [3 4 3 5 2 3 4 3 1 5] index = 5 Output : 4 Element initial index – 5 (third 3) After sorting array by stable sorting algorithm we get array as shown below [1(8) 2(4) 3(0) 3(2) 3(5) 3(7) 4(1) 4(6) 5(3) 5(9)] with their initial indices shown in parentheses next to them Element's index after sorting = 4 
Recommended Practice Stabil sortering och position Prova!

Ett enkelt sätt att lösa detta problem är att använda vilken stabil sorteringsalgoritm som helst Insättningssortering Sortera går etc och sedan få det nya indexet för ett givet element men vi kan lösa detta problem utan att sortera arrayen. 

Som position för ett element i en sorterad array avgörs endast av de element som är mindre än ett givet element. Vi räknar alla arrayelement som är mindre än ett givet element och för de element som är lika med givna elementelement som förekommer innan givna elements index kommer att inkluderas i antalet mindre element, vilket säkerställer stabiliteten hos resultatets index. 

Enkel kod för att implementera ovanstående tillvägagångssätt implementeras nedan: 

C++
   // C++ program to get index of array element in    // sorted array    #include             using     namespace     std  ;      // Method returns the position of arr[idx] after    // performing stable-sort on array    int     getIndexInSortedArray  (  int     arr  []     int     n       int     idx  )      {         /* Count of elements smaller than current     element plus the equal element occurring     before given index*/      int     result     =     0  ;         for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {         // If element is smaller then increase       // the smaller count       if     (  arr  [  i  ]      <     arr  [  idx  ])         result  ++  ;         // If element is equal then increase count       // only if it occurs before       if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )         result  ++  ;         }         return     result  ;      }      // Driver code to test above methods    int     main  ()      {         int     arr  []     =     {     3       4       3       5       2       3       4       3       1       5     };         int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);         int     idxOfEle     =     5  ;         cout      < <     getIndexInSortedArray  (  arr       n       idxOfEle  );         return     0  ;      }      
Java
   // Java program to get index of array   // element in sorted array   class   ArrayIndex     {      // Method returns the position of      // arr[idx] after performing stable-sort      // on array      static     int     getIndexInSortedArray  (  int     arr  []        int     n       int     idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      int     result     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ]  )      result  ++  ;      // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     3       4       3       5       2       3       4       3       1       5     };      int     n     =     arr  .  length  ;      int     idxOfEle     =     5  ;      System  .  out  .  println  (  getIndexInSortedArray  (  arr        n       idxOfEle  ));      }   }   // This code is contributed by Raghav sharma   
Python3
   # Python program to get index of array element in   # sorted array   # Method returns the position of arr[idx] after   # performing stable-sort on array   def   getIndexInSortedArray  (  arr     n     idx  ):   # Count of elements smaller than current   # element plus the equal element occurring   # before given index   result   =   0   for   i   in   range  (  n  ):   # If element is smaller then increase   # the smaller count   if   (  arr  [  i  ]    <   arr  [  idx  ]):   result   +=   1   # If element is equal then increase count   # only if it occurs before   if   (  arr  [  i  ]   ==   arr  [  idx  ]   and   i    <   idx  ):   result   +=   1   return   result  ;   # Driver code to test above methods   arr   =   [  3     4     3     5     2     3     4     3     1     5  ]   n   =   len  (  arr  )   idxOfEle   =   5   print   (  getIndexInSortedArray  (  arr     n     idxOfEle  ))   # Contributed by: Afzal Ansari   
C#
   // C# program to get index of array   // element in sorted array   using     System  ;   class     ArrayIndex     {          // Method returns the position of      // arr[idx] after performing stable-sort      // on array      static     int     getIndexInSortedArray  (  int  []     arr        int     n       int     idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      int     result     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ])      result  ++  ;      // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     3       4       3       5       2       3       4       3       1       5     };      int     n     =     arr  .  Length  ;      int     idxOfEle     =     5  ;      Console  .  WriteLine  (  getIndexInSortedArray  (  arr       n           idxOfEle  ));      }   }   // This code is contributed by vt_m   
PHP
      // PHP program to get index of   // array element in sorted array   // Method returns the position of    // arr[idx] after performing    // stable-sort on array   function   getIndexInSortedArray  (   $arr     $n     $idx  )   {   /* Count of elements smaller    than current element plus     the equal element occurring    before given index */   $result   =   0  ;   for  (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // If element is smaller then   // increase the smaller count   if   (  $arr  [  $i  ]    <   $arr  [  $idx  ])   $result  ++  ;   // If element is equal then   // increase count only if    // it occurs before   if   (  $arr  [  $i  ]   ==   $arr  [  $idx  ]   and   $i    <   $idx  )   $result  ++  ;   }   return   $result  ;   }   // Driver Code   $arr   =   array  (  3     4     3     5     2     3     4     3     1     5  );   $n   =  count  (  $arr  );   $idxOfEle   =   5  ;   echo   getIndexInSortedArray  (  $arr     $n     $idxOfEle  );   // This code is contributed by anuj_67.   ?>   
JavaScript
    <  script  >   // JavaScript program to get index of array   // element in sorted array      // Method returns the position of      // arr[idx] after performing stable-sort      // on array      function     getIndexInSortedArray  (  arr        n       idx  )      {      /* Count of elements smaller than     current element plus the equal element    occurring before given index*/      let     result     =     0  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If element is smaller then      // increase the smaller count      if     (  arr  [  i  ]      <     arr  [  idx  ])      result  ++  ;          // If element is equal then increase      // count only if it occurs before      if     (  arr  [  i  ]     ==     arr  [  idx  ]     &&     i      <     idx  )      result  ++  ;      }      return     result  ;      }   // Driver Code      let     arr     =     [     3       4       3       5       2       3       4       3       1       5     ];      let     n     =     arr  .  length  ;          let     idxOfEle     =     5  ;      document  .  write  (  getIndexInSortedArray  (  arr        n       idxOfEle  ));       // This code is contributed by code_hunt.     <  /script>   

Produktion
4 

Tidskomplexitet: På) där n är storleken på arrayen.
Hjälputrymme: O(1)

 

Skapa frågesport