Minsta steg för att nå målet av en riddare | Set 2

Minsta steg för att nå målet av en riddare | Set 2

Givet ett fyrkantigt schackbräde av storleken N x N ges riddarens position och målets position uppgiften att ta reda på de minsta steg en riddare kommer att ta för att nå målpositionen.
 

Minsta steg för att nå målet av en riddare | Set 2


Exempel: 
 

Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3 


 


En BFS-metod för att lösa ovanstående problem har redan diskuterats i tidigare posta. I detta inlägg diskuteras en dynamisk programmeringslösning.
Förklaring av tillvägagångssättet:  
 

    Fall 1: Om målet inte är längs en rad eller en kolumn av riddarens position. 
    Låt ett schackbräde på 8 x 8 celler. Låt nu säga att riddaren är på (3 3) och målet är på (7 8). Det finns 8 möjliga drag från riddarens nuvarande position, dvs (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Men bland dessa kommer endast två drag (5 4) och (4 5) att vara mot målet och alla andra går bort från målet. Så för att hitta minimisteg gå till antingen (4 5) eller (5 4). Beräkna nu de minsta stegen från (4 5) och (5 4) för att nå målet. Detta beräknas genom dynamisk programmering. Detta resulterar således i minimisteg från (3 3) till (7 8). Fall 2: Om målet är längs en rad eller en kolumn av riddarens position. 
    Låt ett schackbräde på 8 x 8 celler. Låt oss nu säga att riddaren är på (4 3) och målet är på (4 7). Det finns 8 möjliga drag men mot målet finns det bara 4 drag, dvs (5 5) (3 5) (2 4) (6 4). Som (5 5) är ekvivalent med (3 5) och (2 4) är ekvivalent med (6 4). Så från dessa 4 poäng kan det omvandlas till 2 poäng. Ta (5 5) och (6 4) (här). Beräkna nu de minsta steg som tas från dessa två punkter för att nå målet. Detta beräknas genom dynamisk programmering. Detta resulterar således i minimisteg från (4 3) till (4 7).


Undantag: När riddaren kommer att vara i hörnet och målet är sådan att skillnaden mellan x och y koordinater med riddarens position är (1 1) eller vice versa. Då blir minsta steg 4.
Dynamisk programmeringsekvation: 
 

1) dp[diffOfX][diffOfY] är de minsta steg som tas från riddarens position till målets position.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
där diffOfX = skillnaden mellan riddarens x-koordinat och målets x-koordinat 
diffOfY = skillnaden mellan riddarens y-koordinat och målets y-koordinat 
 


Nedan är implementeringen av ovanstående tillvägagångssätt: 
 

C++
   // C++ code for minimum steps for   // a knight to reach target position   #include          using     namespace     std  ;   // initializing the matrix.   int     dp  [  8  ][  8  ]     =     {     0     };   int     getsteps  (  int     x       int     y           int     tx       int     ty  )   {      // if knight is on the target       // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     !=     0  )      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      int     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).      dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     =         min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [  abs  (  y     -     ty  )][  abs  (  x     -     tx  )]     =         dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      }      }   }   // Driver Code   int     main  ()   {      int     i       n       x       y       tx       ty       ans  ;          // size of chess board n*n      n     =     100  ;          // (x y) coordinate of the knight.      // (tx ty) coordinate of the target position.      x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.      if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||         (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||         (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||         (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;      else     {      // dp[a][b] here a b is the difference of      // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      cout      < <     ans      < <     endl  ;      return     0  ;   }   
Java
   //Java code for minimum steps for    // a knight to reach target position    public     class   GFG     {   // initializing the matrix.       static     int     dp  [][]     =     new     int  [  8  ][  8  ]  ;      static     int     getsteps  (  int     x       int     y        int     tx       int     ty  )     {      // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {      return     dp  [  0  ][  0  ]  ;      }     else     // if already calculated then return       // that value. Taking absolute difference.       if     (  dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]     !=     0  )     {      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }     else     {      // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;      // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]      =     Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;      // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .  abs  (  y     -     ty  )  ][     Math  .  abs  (  x     -     tx  )  ]      =     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }      }   // Driver Code       static     public     void     main  (  String  []     args  )     {      int     i       n       x       y       tx       ty       ans  ;      // size of chess board n*n       n     =     100  ;      // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )      ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )      ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )      ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )      ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     {      // dp[a][b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      System  .  out  .  println  (  ans  );      }   }   /*This code is contributed by PrinciRaj1992*/   
Python3
   # Python3 code for minimum steps for   # a knight to reach target position   # initializing the matrix.   dp   =   [[  0   for   i   in   range  (  8  )]   for   j   in   range  (  8  )];   def   getsteps  (  x     y     tx     ty  ):   # if knight is on the target   # position return 0.   if   (  x   ==   tx   and   y   ==   ty  ):   return   dp  [  0  ][  0  ];   # if already calculated then return   # that value. Taking absolute difference.   elif  (  dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   !=   0  ):   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   else  :   # there will be two distinct positions   # from the knight towards a target.   # if the target is in same row or column   # as of knight then there can be four   # positions towards the target but in that   # two would be the same and the other two   # would be the same.   x1     y1     x2     y2   =   0     0     0     0  ;   # (x1 y1) and (x2 y2) are two positions.   # these can be different according to situation.   # From position of knight the chess board can be   # divided into four blocks i.e.. N-E E-S S-W W-N .   if   (  x    <=   tx  ):   if   (  y    <=   ty  ):   x1   =   x   +   2  ;   y1   =   y   +   1  ;   x2   =   x   +   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   +   2  ;   y1   =   y   -   1  ;   x2   =   x   +   1  ;   y2   =   y   -   2  ;   elif   (  y    <=   ty  ):   x1   =   x   -   2  ;   y1   =   y   +   1  ;   x2   =   x   -   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   -   2  ;   y1   =   y   -   1  ;   x2   =   x   -   1  ;   y2   =   y   -   2  ;   # ans will be 1 + minimum of steps   # required from (x1 y1) and (x2 y2).   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   =    min  (  getsteps  (  x1     y1     tx     ty  )   getsteps  (  x2     y2     tx     ty  ))   +   1  ;   # exchanging the coordinates x with y of both   # knight and target will result in same ans.   dp  [  abs  (  y   -   ty  )][  abs  (  x   -   tx  )]   =    dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   # Driver Code   if   __name__   ==   '__main__'  :   # size of chess board n*n   n   =   100  ;   # (x y) coordinate of the knight.   # (tx ty) coordinate of the target position.   x   =   4  ;   y   =   5  ;   tx   =   1  ;   ty   =   1  ;   # (Exception) these are the four corner points   # for which the minimum steps is 4.   if   ((  x   ==   1   and   y   ==   1   and   tx   ==   2   and   ty   ==   2  )   or   (  x   ==   2   and   y   ==   2   and   tx   ==   1   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   1   and   y   ==   n   and   tx   ==   2   and   ty   ==   n   -   1  )   or   (  x   ==   2   and   y   ==   n   -   1   and   tx   ==   1   and   ty   ==   n  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   1   and   tx   ==   n   -   1   and   ty   ==   2  )   or   (  x   ==   n   -   1   and   y   ==   2   and   tx   ==   n   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   n   and   tx   ==   n   -   1   and   ty   ==   n   -   1  )   or   (  x   ==   n   -   1   and   y   ==   n   -   1   and   tx   ==   n   and   ty   ==   n  )):   ans   =   4  ;   else  :   # dp[a][b] here a b is the difference of   # x & tx and y & ty respectively.   dp  [  1  ][  0  ]   =   3  ;   dp  [  0  ][  1  ]   =   3  ;   dp  [  1  ][  1  ]   =   2  ;   dp  [  2  ][  0  ]   =   2  ;   dp  [  0  ][  2  ]   =   2  ;   dp  [  2  ][  1  ]   =   1  ;   dp  [  1  ][  2  ]   =   1  ;   ans   =   getsteps  (  x     y     tx     ty  );   print  (  ans  );   # This code is contributed by PrinciRaj1992   
C#
   // C# code for minimum steps for    // a knight to reach target position    using     System  ;   public     class     GFG  {   // initializing the matrix.       static     int     [          ]  dp     =     new     int  [  8          8  ];         static     int     getsteps  (  int     x       int     y           int     tx       int     ty  )     {         // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {         return     dp  [  0          0  ];         }     else     // if already calculated then return       // that value. Taking Absolute difference.       if     (  dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]     !=     0  )     {         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }     else     {         // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;         // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {         if     (  y      <=     ty  )     {         x1     =     x     +     2  ;         y1     =     y     +     1  ;         x2     =     x     +     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     +     2  ;         y1     =     y     -     1  ;         x2     =     x     +     1  ;         y2     =     y     -     2  ;         }         }     else     if     (  y      <=     ty  )     {         x1     =     x     -     2  ;         y1     =     y     +     1  ;         x2     =     x     -     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     -     2  ;         y1     =     y     -     1  ;         x2     =     x     -     1  ;         y2     =     y     -     2  ;         }         // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]         =     Math  .  Min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;         // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .     Abs  (  y     -     ty  )          Math  .     Abs  (  x     -     tx  )]         =     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }         }      // Driver Code       static     public     void     Main  ()     {         int     i       n       x       y       tx       ty       ans  ;         // size of chess board n*n       n     =     100  ;         // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;         y     =     5  ;         tx     =     1  ;         ty     =     1  ;         // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )         ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )         ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )         ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )         ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     {         // dp[a  b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1          0  ]     =     3  ;         dp  [  0          1  ]     =     3  ;         dp  [  1          1  ]     =     2  ;         dp  [  2          0  ]     =     2  ;         dp  [  0          2  ]     =     2  ;         dp  [  2          1  ]     =     1  ;         dp  [  1          2  ]     =     1  ;         ans     =     getsteps  (  x       y       tx       ty  );         }         Console  .  WriteLine  (  ans  );         }      }      /*This code is contributed by PrinciRaj1992*/   
JavaScript
    <  script  >   // JavaScript code for minimum steps for   // a knight to reach target position   // initializing the matrix.   let     dp     =     new     Array  (  8  )   for  (  let     i  =  0  ;  i   <  8  ;  i  ++  ){      dp  [  i  ]     =     new     Array  (  8  ).  fill  (  0  )   }   function     getsteps  (  x    y    tx    ty  )   {      // if knight is on the target      // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     !=     0  )      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      let     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps      // required from (x1 y1) and (x2 y2).      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     =      Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [(  Math  .  abs  (  y     -     ty  ))][(  Math  .  abs  (  x     -     tx  ))]     =      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      }      }   }   // Driver Code   let     i       n       x       y       tx       ty       ans  ;   // size of chess board n*n   n     =     100  ;   // (x y) coordinate of the knight.   // (tx ty) coordinate of the target position.   x     =     4  ;   y     =     5  ;   tx     =     1  ;   ty     =     1  ;   // (Exception) these are the four corner points   // for which the minimum steps is 4.   if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||   (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||      (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||      (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;   else      {   // dp[a][b] here a b is the difference of   // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );   }   document  .  write  (  ans    ' 
'
); // This code is contributed by shinjanpatra. < /script>

Produktion:  
3 

 

Tidskomplexitet: O(N * M) där N är det totala antalet rader och M är det totala antalet kolumner
Hjälputrymme: O(N * M) 

Skapa frågesport