Största produkten av en undergrupp av storlek k

Största produkten av en undergrupp av storlek k
Prova det på GfG Practice #practiceLinkDiv { display: ingen !viktigt; }

Givet en matris bestående av n positiva heltal och ett heltal k. Hitta den största produktundergruppen av storlek k, dvs. hitta den maximala produktionen av k sammanhängande element i arrayen där k <= n.
Exempel:  

    Input:     arr[] = {1 5 9 8 2 4   
1 8 1 2}
k = 6
Output: 4608
The subarray is {9 8 2 4 1 8}
Input: arr[] = {1 5 9 8 2 4 1 8 1 2}
k = 4
Output: 720
The subarray is {5 9 8 2}
Input: arr[] = {2 5 8 1 1 3};
k = 3
Output: 80
The subarray is {2 5 8} Recommended Practice Största produkten Prova!

Brute Force Approach:

Vi itererar över alla subarrayer av storlek k genom att använda två kapslade slingor. Den yttre slingan går från 0 till n-k och den inre slingan går från i till i+k-1. Vi beräknar produkten för varje subarray och uppdaterar den maximala produkten som hittats hittills. Slutligen returnerar vi den maximala produkten.

Här är stegen för ovanstående tillvägagångssätt:

  1. Initiera en variabel maxProduct till INT_MIN som representerar det minsta möjliga heltalsvärdet.
  2. Iterera över alla undergrupper av storlek k genom att använda två kapslade slingor.
  3. Den yttre slingan går från 0 till n-k.
  4. Den inre slingan löper från i till i+k-1 där i är startindexet för subarrayen.
  5. Beräkna produkten av den aktuella delmatrisen med den inre slingan.
  6. Om produkten är större än maxProduct uppdatera maxProduct till den aktuella produkten.
  7. Returnera maxProduct som resultat.

Nedan är koden för ovanstående tillvägagångssätt:

C++
   // C++ program to find the maximum product of a subarray   // of size k.   #include          using     namespace     std  ;   // This function returns maximum product of a subarray   // of size k in given array arr[0..n-1]. This function   // assumes that k is smaller than or equal to n.   int     findMaxProduct  (  int     arr  []     int     n       int     k  )   {      int     maxProduct     =     INT_MIN  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ];      }      maxProduct     =     max  (  maxProduct       product  );      }      return     maxProduct  ;   }   // Driver code   int     main  ()   {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     sizeof  (  arr1  )  /  sizeof  (  arr1  [  0  ]);      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      k     =     4  ;      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     sizeof  (  arr2  )  /  sizeof  (  arr2  [  0  ]);      cout      < <     findMaxProduct  (  arr2       n       k  );      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // This function returns the maximum product of a subarray of size k in the given array      // It assumes that k is smaller than or equal to the length of the array.      static     int     findMaxProduct  (  int  []     arr       int     n       int     k  )     {      int     maxProduct     =     Integer  .  MIN_VALUE  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ]  ;      }      maxProduct     =     Math  .  max  (  maxProduct       product  );      }      return     maxProduct  ;      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  []     arr1     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));      k     =     4  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));      int  []     arr2     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr2       n       k  ));      }   }   
Python3
   # Python Code   def   find_max_product  (  arr     k  ):   max_product   =   float  (  '-inf'  )   # Initialize max_product to negative infinity   n   =   len  (  arr  )   # Get the length of the input array   # Iterate through the array with a window of size k   for   i   in   range  (  n   -   k   +   1  ):   product   =   1   # Initialize product to 1 for each subarray   for   j   in   range  (  i     i   +   k  ):   product   *=   arr  [  j  ]   # Calculate the product of the subarray   max_product   =   max  (  max_product     product  )   # Update max_product if necessary   return   max_product   # Return the maximum product of a subarray of size k   # Driver code   if   __name__   ==   '__main__'  :   arr1   =   [  1     5     9     8     2     4     1     8     1     2  ]   k   =   6   print  (  find_max_product  (  arr1     k  ))   # Output 25920   k   =   4   print  (  find_max_product  (  arr1     k  ))   # Output 1728   arr2   =   [  2     5     8     1     1     3  ]   k   =   3   print  (  find_max_product  (  arr2     k  ))   # Output 80   # This code is contributed by guptapratik   
C#
   using     System  ;   public     class     GFG   {      // This function returns the maximum product of a subarray of size k in the given array      // It assumes that k is smaller than or equal to the length of the array.      static     int     FindMaxProduct  (  int  []     arr       int     n       int     k  )      {      int     maxProduct     =     int  .  MinValue  ;      for     (  int     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )      {      int     product     =     1  ;      for     (  int     j     =     i  ;     j      <     i     +     k  ;     j  ++  )      {      product     *=     arr  [  j  ];      }      maxProduct     =     Math  .  Max  (  maxProduct       product  );      }      return     maxProduct  ;      }      // Driver code      public     static     void     Main  (  string  []     args  )      {      int  []     arr1     =     {     1       5       9       8       2       4       1       8       1       2     };      int     k     =     6  ;      int     n     =     arr1  .  Length  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr1       n       k  ));      k     =     4  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr1       n       k  ));      int  []     arr2     =     {     2       5       8       1       1       3     };      k     =     3  ;      n     =     arr2  .  Length  ;      Console  .  WriteLine  (  FindMaxProduct  (  arr2       n       k  ));      }   }   
JavaScript
   // This function returns the maximum product of a subarray of size k in the given array   // It assumes that k is smaller than or equal to the length of the array.   function     findMaxProduct  (  arr       k  )     {      let     maxProduct     =     Number  .  MIN_VALUE  ;      const     n     =     arr  .  length  ;      for     (  let     i     =     0  ;     i      <=     n     -     k  ;     i  ++  )     {      let     product     =     1  ;      for     (  let     j     =     i  ;     j      <     i     +     k  ;     j  ++  )     {      product     *=     arr  [  j  ];      }      maxProduct     =     Math  .  max  (  maxProduct       product  );      }      return     maxProduct  ;   }   // Driver code   const     arr1     =     [  1       5       9       8       2       4       1       8       1       2  ];   let     k     =     6  ;   console  .  log  (  findMaxProduct  (  arr1       k  ));   k     =     4  ;   console  .  log  (  findMaxProduct  (  arr1       k  ));   const     arr2     =     [  2       5       8       1       1       3  ];   k     =     3  ;   console  .  log  (  findMaxProduct  (  arr2       k  ));   

Produktion
4608 720 80 

Tidskomplexitet: O(n*k) där n är längden på inmatningsmatrisen och k är storleken på subarrayen för vilken vi hittar den maximala produkten.
Hjälputrymme: O(1) eftersom vi bara använder en konstant mängd extra utrymme för att lagra den maximala produkten och produkten av den aktuella subarrayen.

Metod 2 (effektiv: O(n))  
Vi kan lösa det i O(n) genom att använda det faktum att produkten av en delmatris med storleken k kan beräknas i O(1)-tid om vi har produkten från föregående delmatris tillgänglig hos oss. 
 

 curr_product = (prev_product / arr[i-1]) * arr[i + k -1]   
prev_product : Product of subarray of size k beginning
with arr[i-1]
curr_product : Product of subarray of size k beginning
with arr[i]


På detta sätt kan vi beräkna den maximala k-storlekssubmatrisprodukten i endast en genomgång. Nedan är C++ implementering av idén.

C++
   // C++ program to find the maximum product of a subarray   // of size k.   #include          using     namespace     std  ;   // This function returns maximum product of a subarray   // of size k in given array arr[0..n-1]. This function   // assumes that k is smaller than or equal to n.   int     findMaxProduct  (  int     arr  []     int     n       int     k  )   {      // Initialize the MaxProduct to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i  =  0  ;     i   <  k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];      int     prev_product     =     MaxProduct  ;      // Consider every product beginning with arr[i]      // where i varies from 1 to n-k-1      for     (  int     i  =  1  ;     i   <=  n  -  k  ;     i  ++  )      {      int     curr_product     =     (  prev_product  /  arr  [  i  -1  ])     *      arr  [  i  +  k  -1  ];      MaxProduct     =     max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }      // Return the maximum product found      return     MaxProduct  ;   }   // Driver code   int     main  ()   {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     sizeof  (  arr1  )  /  sizeof  (  arr1  [  0  ]);      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      k     =     4  ;      cout      < <     findMaxProduct  (  arr1       n       k  )      < <     endl  ;      int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     sizeof  (  arr2  )  /  sizeof  (  arr2  [  0  ]);      cout      < <     findMaxProduct  (  arr2       n       k  );      return     0  ;   }   
Java
   // Java program to find the maximum product of a subarray   // of size k   import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      // Function returns maximum product of a subarray      // of size k in given array arr[0..n-1]. This function      // assumes that k is smaller than or equal to n.      static     int     findMaxProduct  (  int     arr  []       int     n       int     k  )      {      // Initialize the MaxProduct to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i  =  0  ;     i   <  k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ]  ;          int     prev_product     =     MaxProduct  ;          // Consider every product beginning with arr[i]      // where i varies from 1 to n-k-1      for     (  int     i  =  1  ;     i   <=  n  -  k  ;     i  ++  )      {      int     curr_product     =     (  prev_product  /  arr  [  i  -  1  ]  )     *      arr  [  i  +  k  -  1  ]  ;      MaxProduct     =     Math  .  max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }          // Return the maximum product found      return     MaxProduct  ;      }          // driver program      public     static     void     main     (  String  []     args  )         {      int     arr1  []     =     {  1       5       9       8       2       4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));          k     =     4  ;      System  .  out  .  println  (  findMaxProduct  (  arr1       n       k  ));          int     arr2  []     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  length  ;      System  .  out  .  println  (  findMaxProduct  (  arr2       n       k  ));      }   }   // This code is contributed by Pramod Kumar   
Python3
   # Python 3 program to find the maximum    # product of a subarray of size k.   # This function returns maximum product    # of a subarray of size k in given array   # arr[0..n-1]. This function assumes    # that k is smaller than or equal to n.   def   findMaxProduct  (  arr     n     k  )   :   # Initialize the MaxProduct to 1    # as all elements in the array    # are positive   MaxProduct   =   1   for   i   in   range  (  0     k  )   :   MaxProduct   =   MaxProduct   *   arr  [  i  ]   prev_product   =   MaxProduct   # Consider every product beginning   # with arr[i] where i varies from   # 1 to n-k-1   for   i   in   range  (  1     n   -   k   +   1  )   :   curr_product   =   (  prev_product   //   arr  [  i  -  1  ])   *   arr  [  i  +  k  -  1  ]   MaxProduct   =   max  (  MaxProduct     curr_product  )   prev_product   =   curr_product   # Return the maximum product found   return   MaxProduct   # Driver code   arr1   =   [  1     5     9     8     2     4     1     8     1     2  ]   k   =   6   n   =   len  (  arr1  )   print   (  findMaxProduct  (  arr1     n     k  )   )   k   =   4   print   (  findMaxProduct  (  arr1     n     k  ))   arr2   =   [  2     5     8     1     1     3  ]   k   =   3   n   =   len  (  arr2  )   print  (  findMaxProduct  (  arr2     n     k  ))   # This code is contributed by Nikita Tiwari.   
C#
   // C# program to find the maximum    // product of a subarray of size k   using     System  ;   class     GFG      {      // Function returns maximum       // product of a subarray of       // size k in given array       // arr[0..n-1]. This function       // assumes that k is smaller       // than or equal to n.      static     int     findMaxProduct  (  int     []  arr           int     n       int     k  )      {      // Initialize the MaxProduct       // to 1 as all elements      // in the array are positive      int     MaxProduct     =     1  ;      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];      int     prev_product     =     MaxProduct  ;      // Consider every product beginning       // with arr[i] where i varies from       // 1 to n-k-1      for     (  int     i     =     1  ;     i      <=     n     -     k  ;     i  ++  )      {      int     curr_product     =     (  prev_product     /         arr  [  i     -     1  ])     *         arr  [  i     +     k     -     1  ];      MaxProduct     =     Math  .  Max  (  MaxProduct           curr_product  );      prev_product     =     curr_product  ;      }      // Return the maximum      // product found      return     MaxProduct  ;      }          // Driver Code      public     static     void     Main     ()         {      int     []  arr1     =     {  1       5       9       8       2           4       1       8       1       2  };      int     k     =     6  ;      int     n     =     arr1  .  Length  ;      Console  .  WriteLine  (  findMaxProduct  (  arr1       n       k  ));      k     =     4  ;      Console  .  WriteLine  (  findMaxProduct  (  arr1       n       k  ));      int     []  arr2     =     {  2       5       8       1       1       3  };      k     =     3  ;      n     =     arr2  .  Length  ;      Console  .  WriteLine  (  findMaxProduct  (  arr2       n       k  ));      }   }   // This code is contributed by anuj_67.   
JavaScript
    <  script  >      // JavaScript program to find the maximum       // product of a subarray of size k          // Function returns maximum       // product of a subarray of       // size k in given array       // arr[0..n-1]. This function       // assumes that k is smaller       // than or equal to n.      function     findMaxProduct  (  arr       n       k  )      {      // Initialize the MaxProduct       // to 1 as all elements      // in the array are positive      let     MaxProduct     =     1  ;      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )      MaxProduct     *=     arr  [  i  ];          let     prev_product     =     MaxProduct  ;          // Consider every product beginning       // with arr[i] where i varies from       // 1 to n-k-1      for     (  let     i     =     1  ;     i      <=     n     -     k  ;     i  ++  )      {      let     curr_product     =         (  prev_product     /     arr  [  i     -     1  ])     *     arr  [  i     +     k     -     1  ];      MaxProduct     =     Math  .  max  (  MaxProduct       curr_product  );      prev_product     =     curr_product  ;      }          // Return the maximum      // product found      return     MaxProduct  ;      }          let     arr1     =     [  1       5       9       8       2       4       1       8       1       2  ];      let     k     =     6  ;      let     n     =     arr1  .  length  ;      document  .  write  (  findMaxProduct  (  arr1       n       k  )     +     ' 
'
); k = 4 ; document . write ( findMaxProduct ( arr1 n k ) + '
'
); let arr2 = [ 2 5 8 1 1 3 ]; k = 3 ; n = arr2 . length ; document . write ( findMaxProduct ( arr2 n k ) + '
'
); < /script>
PHP
      // PHP program to find the maximum    // product of a subarray of size k.   // This function returns maximum    // product of a subarray of size    // k in given array arr[0..n-1].   // This function assumes that k    // is smaller than or equal to n.   function   findMaxProduct  (   $arr     $n     $k  )   {   // Initialize the MaxProduct to   // 1 as all elements   // in the array are positive   $MaxProduct   =   1  ;   for  (  $i   =   0  ;   $i    <   $k  ;   $i  ++  )   $MaxProduct   *=   $arr  [  $i  ];   $prev_product   =   $MaxProduct  ;   // Consider every product   // beginning with arr[i]   // where i varies from 1    // to n-k-1   for  (  $i   =   1  ;   $i    <   $n   -   $k  ;   $i  ++  )   {   $curr_product   =   (  $prev_product   /   $arr  [  $i   -   1  ])   *   $arr  [  $i   +   $k   -   1  ];   $MaxProduct   =   max  (  $MaxProduct     $curr_product  );   $prev_product   =   $curr_product  ;   }   // Return the maximum   // product found   return   $MaxProduct  ;   }   // Driver code   $arr1   =   array  (  1     5     9     8     2     4     1     8     1     2  );   $k   =   6  ;   $n   =   count  (  $arr1  );   echo   findMaxProduct  (  $arr1     $n     $k  )  '  n  '   ;   $k   =   4  ;   echo   findMaxProduct  (  $arr1     $n     $k  )  '  n  '  ;   $arr2   =   array  (  2     5     8     1     1     3  );   $k   =   3  ;   $n   =   count  (  $arr2  );   echo   findMaxProduct  (  $arr2     $n     $k  );   // This code is contributed by anuj_67.   ?>   

Produktion
4608 720 80 

Hjälputrymme: O(1) eftersom inget extra utrymme används.
Denna artikel är bidragit av Ashutosh Kumar .