Algorithme de Stein pour trouver GCD

Algorithme de Stein pour trouver GCD
Essayez-le sur GfG Practice

L'algorithme de Stein ou algorithme binaire GCD est un algorithme qui calcule le plus grand commun diviseur de deux entiers non négatifs. L’algorithme de Stein remplace la division par des comparaisons de décalages arithmétiques et des soustractions.

Exemples :  

Saisir : une = 17 b = 34
Sortir : 17

Saisir : une = 50 b = 49
Sortir : 1

Algorithme pour trouver GCD en utilisant l'algorithme de Stein pgcd(a b)  

L'algorithme est principalement une optimisation par rapport au standard Algorithme euclidien pour GCD

  1. Si a et b valent tous deux 0, pgcd est égal à zéro pgcd(0 0) = 0.
  2. pgcd(a 0) = a et pgcd(0 b) = b car tout divise 0.
  3. Si a et b sont tous deux pairs pgcd(a b) = 2*gcd(a/2 b/2) car 2 est un diviseur commun. La multiplication par 2 peut être effectuée avec un opérateur de décalage au niveau du bit.
  4. Si a est pair et b est impair pgcd(a b) = pgcd(a/2 b). De même, si a est impair et b est pair alors 
    pgcd(un b) = pgcd(un b/2). C’est parce que 2 n’est pas un diviseur commun.
  5. Si a et b sont impairs alors pgcd(a b) = pgcd(|a-b|/2 b). Notez que la différence entre deux nombres impairs est paire
  6. Répétez les étapes 3 à 5 jusqu'à ce que a = b ou jusqu'à a = 0. Dans les deux cas, le PGCD est puissance (2 k) * b où puissance (2 k) est 2 élevée à la puissance k et k est le nombre de facteurs communs de 2 trouvés à l'étape 3.
C++
   // Iterative C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  )      swap  (  a       b  );     // Swap u and v.      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Iterative Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd.      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      // Now a and b are both odd. Swap      // if necessary so a  <= b then set      // b = b - a (which is even)      if     (  a     >     b  )         {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      // restore common factors of 2      return     a      < <     k  ;      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Iterative Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # Finding K where K is the   # greatest power of 2 that   # divides both a and b.   k   =   0   while  (((  a   |   b  )   &   1  )   ==   0  ):   a   =   a   >>   1   b   =   b   >>   1   k   =   k   +   1   # Dividing a by 2 until a becomes odd   while   ((  a   &   1  )   ==   0  ):   a   =   a   >>   1   # From here on 'a' is always odd.   while  (  b   !=   0  ):   # If b is even remove all   # factor of 2 in b   while   ((  b   &   1  )   ==   0  ):   b   =   b   >>   1   # Now a and b are both odd. Swap if   # necessary so a  <= b then set   # b = b - a (which is even).   if   (  a   >   b  ):   # Swap u and v.   temp   =   a   a   =   b   b   =   temp   b   =   (  b   -   a  )   # restore common factors of 2   return   (  a    < <   k  )   # Driver code   a   =   34   b   =   17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed by Nikita Tiwari.   
C#
   // Iterative C# program to implement   // Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd. Swap    if necessary so a  <= b then set    b = b - a (which is even).*/      if     (  a     >     b  )     {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal   
JavaScript
    <  script  >   // Iterative JavaScript program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function     gcd  (     a       b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      let     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  ){      let     t     =     a  ;      a     =     b  ;      b     =     t  ;      }      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given numbers is '  +     gcd  (  a       b  ));   // This code contributed by gauravrajput1     <  /script>   
PHP
      // Iterative php program to    // implement Stein's Algorithm   // Function to implement    // Stein's Algorithm   function   gcd  (  $a     $b  )   {   // GCD(0 b) == b; GCD(a 0) == a   // GCD(0 0) == 0   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // Finding K where K is the greatest   // power of 2 that divides both a and b.   $k  ;   for   (  $k   =   0  ;   ((  $a   |   $b  )   &   1  )   ==   0  ;   ++  $k  )   {   $a   >>=   1  ;   $b   >>=   1  ;   }   // Dividing a by 2 until a becomes odd    while   ((  $a   &   1  )   ==   0  )   $a   >>=   1  ;   // From here on 'a' is always odd.   do   {   // If b is even remove    // all factor of 2 in b    while   ((  $b   &   1  )   ==   0  )   $b   >>=   1  ;   // Now a and b are both odd. Swap   // if necessary so a  <= b then set    // b = b - a (which is even)   if   (  $a   >   $b  )   swap  (  $a     $b  );   // Swap u and v.   $b   =   (  $b   -   $a  );   }   while   (  $b   !=   0  );   // restore common factors of 2   return   $a    < <   $k  ;   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is '   .   gcd  (  $a     $b  );   // This code is contributed by ajit   ?>   

Sortir
Gcd of given numbers is 17 

Complexité temporelle : O(N*N)
Espace auxiliaire : O(1)

[Approche attendue 2] Implémentation récursive - O(N*N) Le temps et O(N*N) Espace

C++
   // Recursive C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     (  ~  a     &     1  )     // a is even      {      if     (  b     &     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      if     (  ~  b     &     1  )     // a is odd b is even      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Recursive Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Recursive Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   if   (  a   ==   b  ):   return   a   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # look for factors of 2   # a is even   if   ((  ~  a   &   1  )   ==   1  ):   # b is odd   if   ((  b   &   1  )   ==   1  ):   return   gcd  (  a   >>   1     b  )   else  :   # both a and b are even   return   (  gcd  (  a   >>   1     b   >>   1  )    < <   1  )   # a is odd b is even   if   ((  ~  b   &   1  )   ==   1  ):   return   gcd  (  a     b   >>   1  )   # reduce larger number   if   (  a   >   b  ):   return   gcd  ((  a   -   b  )   >>   1     b  )   return   gcd  ((  b   -   a  )   >>   1     a  )   # Driver code   a     b   =   34     17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed   # by Nikita Tiwari.   
C#
   // Recursive C# program to   // implement Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b;      // GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      // a is even      if     ((  ~  a     &     1  )     ==     1  )     {      // b is odd      if     ((  b     &     1  )     ==     1  )      return     gcd  (  a     >>     1       b  );      else      // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // JavaScript program to   // implement Stein's Algorithm      // Function to implement      // Stein's Algorithm      function     gcd  (  a       b  )      {      if     (  a     ==     b  )      return     a  ;          // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;          // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );          else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }          // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );          // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );          return     gcd  ((  b     -     a  )     >>     1       a  );      }   // Driver Code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));        <  /script>   
PHP
      // Recursive PHP program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function   gcd  (  $a     $b  )   {   if   (  $a   ==   $b  )   return   $a  ;   /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // look for factors of 2   if   (  ~  $a   &   1  )   // a is even   {   if   (  $b   &   1  )   // b is odd   return   gcd  (  $a   >>   1     $b  );   else   // both a and b are even   return   gcd  (  $a   >>   1     $b   >>   1  )    < <   1  ;   }   if   (  ~  $b   &   1  )   // a is odd b is even   return   gcd  (  $a     $b   >>   1  );   // reduce larger number   if   (  $a   >   $b  )   return   gcd  ((  $a   -   $b  )   >>   1     $b  );   return   gcd  ((  $b   -   $a  )   >>   1     $a  );   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is: '     gcd  (  $a     $b  );   // This code is contributed by aj_36   ?>   

Sortir
Gcd of given numbers is 17 

Complexité temporelle : O(N*N) où N est le nombre de bits dans le plus grand nombre.
Espace auxiliaire : O(N*N) où N est le nombre de bits dans le plus grand nombre.

Vous aimerez peut-être aussi - Algorithme euclidien de base et étendu

Avantages par rapport à l'algorithme GCD d'Euclide

  • L'algorithme de Stein est une version optimisée de l'algorithme GCD d'Euclide.
  • il est plus efficace en utilisant l'opérateur de décalage au niveau du bit.