Najmanjši koraki, da vitez doseže cilj | Komplet 2
Na kvadratni šahovnici velikosti N x N sta podana položaj konja in položaj tarče. Naloga je ugotoviti najmanjše korake, ki jih bo konj naredil, da doseže ciljni položaj.
Primeri:
Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3
Pristop BFS za rešitev zgornjega problema je bil že obravnavan v prejšnji post. V tej objavi je obravnavana rešitev za dinamično programiranje.
Razlaga pristopa:
Naj bo šahovnica 8 x 8 celic. Recimo, da je vitez na (3 3) in tarča na (7 8). Možnih je 8 potez s trenutnega položaja skakača, tj. (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Toda med temi le dvema potezama (5 4) in (4 5) bosta proti cilju, vsi drugi pa gredo stran od cilja. Če želite najti minimalne korake, pojdite na (4 5) ali (5 4). Sedaj izračunajte najmanjše korake, narejene iz (4 5) in (5 4), da dosežete cilj. To se izračuna z dinamičnim programiranjem. Posledica tega so minimalni koraki od (3 3) do (7 8).
Naj bo šahovnica 8 x 8 celic. Zdaj pa recimo, da je vitez na (4 3) in tarča na (4 7). Možnih je 8 potez, vendar proti tarči so samo 4 poteze, tj. (5 5) (3 5) (2 4) (6 4). Ker je (5 5) enakovredno (3 5) in (2 4) enakovredno (6 4). Torej se lahko iz teh 4 točk pretvori v 2 točki. Ob (5 5) in (6 4) (tukaj). Sedaj izračunajte minimalne korake, ki jih naredite od teh dveh točk, da dosežete cilj. To se izračuna z dinamičnim programiranjem. Posledica tega so najmanjši koraki od (4 3) do (4 7).
Izjema: Ko bo konj v kotu in je tarča takšna, da je razlika koordinat x in y s položajem konja (1 1) ali obratno. Nato bodo minimalni koraki 4.
Enačba dinamičnega programiranja:
1) dp[diffOfX][diffOfY] je najmanjši korak, narejen od položaja skakača do položaja tarče.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
kjer je diffOfX = razlika med x-koordinato viteza in x-koordinato tarče
diffOfY = razlika med y-koordinato viteza in y-koordinato tarče
Spodaj je izvedba zgornjega pristopa:
// C++ code for minimum steps for // a knight to reach target position #include using namespace std ; // initializing the matrix. int dp [ 8 ][ 8 ] = { 0 }; int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) return dp [ 0 ][ 0 ]; else { // if already calculated then return // that value. Taking absolute difference. if ( dp [ abs ( x - tx )][ abs ( y - ty )] != 0 ) return dp [ abs ( x - tx )][ abs ( y - ty )]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else { if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ abs ( x - tx )][ abs ( y - ty )] = min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ abs ( y - ty )][ abs ( x - tx )] = dp [ abs ( x - tx )][ abs ( y - ty )]; return dp [ abs ( x - tx )][ abs ( y - ty )]; } } } // Driver Code int main () { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) ans = 4 ; else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) ans = 4 ; else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) ans = 4 ; else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) ans = 4 ; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } cout < < ans < < endl ; return 0 ; }
Java //Java code for minimum steps for // a knight to reach target position public class GFG { // initializing the matrix. static int dp [][] = new int [ 8 ][ 8 ] ; static int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) { return dp [ 0 ][ 0 ] ; } else // if already calculated then return // that value. Taking absolute difference. if ( dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] != 0 ) { return dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] = Math . min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ Math . abs ( y - ty ) ][ Math . abs ( x - tx ) ] = dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; return dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; } } // Driver Code static public void main ( String [] args ) { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) { ans = 4 ; } else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) { ans = 4 ; } else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) { ans = 4 ; } else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) { ans = 4 ; } else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } System . out . println ( ans ); } } /*This code is contributed by PrinciRaj1992*/
Python3 # Python3 code for minimum steps for # a knight to reach target position # initializing the matrix. dp = [[ 0 for i in range ( 8 )] for j in range ( 8 )]; def getsteps ( x y tx ty ): # if knight is on the target # position return 0. if ( x == tx and y == ty ): return dp [ 0 ][ 0 ]; # if already calculated then return # that value. Taking absolute difference. elif ( dp [ abs ( x - tx )][ abs ( y - ty )] != 0 ): return dp [ abs ( x - tx )][ abs ( y - ty )]; else : # there will be two distinct positions # from the knight towards a target. # if the target is in same row or column # as of knight then there can be four # positions towards the target but in that # two would be the same and the other two # would be the same. x1 y1 x2 y2 = 0 0 0 0 ; # (x1 y1) and (x2 y2) are two positions. # these can be different according to situation. # From position of knight the chess board can be # divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ): if ( y <= ty ): x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; else : x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; elif ( y <= ty ): x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; else : x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; # ans will be 1 + minimum of steps # required from (x1 y1) and (x2 y2). dp [ abs ( x - tx )][ abs ( y - ty )] = min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; # exchanging the coordinates x with y of both # knight and target will result in same ans. dp [ abs ( y - ty )][ abs ( x - tx )] = dp [ abs ( x - tx )][ abs ( y - ty )]; return dp [ abs ( x - tx )][ abs ( y - ty )]; # Driver Code if __name__ == '__main__' : # size of chess board n*n n = 100 ; # (x y) coordinate of the knight. # (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; # (Exception) these are the four corner points # for which the minimum steps is 4. if (( x == 1 and y == 1 and tx == 2 and ty == 2 ) or ( x == 2 and y == 2 and tx == 1 and ty == 1 )): ans = 4 ; elif (( x == 1 and y == n and tx == 2 and ty == n - 1 ) or ( x == 2 and y == n - 1 and tx == 1 and ty == n )): ans = 4 ; elif (( x == n and y == 1 and tx == n - 1 and ty == 2 ) or ( x == n - 1 and y == 2 and tx == n and ty == 1 )): ans = 4 ; elif (( x == n and y == n and tx == n - 1 and ty == n - 1 ) or ( x == n - 1 and y == n - 1 and tx == n and ty == n )): ans = 4 ; else : # dp[a][b] here a b is the difference of # x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); print ( ans ); # This code is contributed by PrinciRaj1992
C# // C# code for minimum steps for // a knight to reach target position using System ; public class GFG { // initializing the matrix. static int [ ] dp = new int [ 8 8 ]; static int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) { return dp [ 0 0 ]; } else // if already calculated then return // that value. Taking Absolute difference. if ( dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )] != 0 ) { return dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )] = Math . Min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ Math . Abs ( y - ty ) Math . Abs ( x - tx )] = dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; return dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; } } // Driver Code static public void Main () { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) { ans = 4 ; } else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) { ans = 4 ; } else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) { ans = 4 ; } else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) { ans = 4 ; } else { // dp[a b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 0 ] = 3 ; dp [ 0 1 ] = 3 ; dp [ 1 1 ] = 2 ; dp [ 2 0 ] = 2 ; dp [ 0 2 ] = 2 ; dp [ 2 1 ] = 1 ; dp [ 1 2 ] = 1 ; ans = getsteps ( x y tx ty ); } Console . WriteLine ( ans ); } } /*This code is contributed by PrinciRaj1992*/
JavaScript < script > // JavaScript code for minimum steps for // a knight to reach target position // initializing the matrix. let dp = new Array ( 8 ) for ( let i = 0 ; i < 8 ; i ++ ){ dp [ i ] = new Array ( 8 ). fill ( 0 ) } function getsteps ( x y tx ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) return dp [ 0 ][ 0 ]; else { // if already calculated then return // that value. Taking absolute difference. if ( dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))] != 0 ) return dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. let x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else { if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))] = Math . min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [( Math . abs ( y - ty ))][( Math . abs ( x - tx ))] = dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; return dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; } } } // Driver Code let i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) ans = 4 ; else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) ans = 4 ; else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) ans = 4 ; else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) ans = 4 ; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } document . write ( ans ' ' ); // This code is contributed by shinjanpatra. < /script>
Izhod:
3
Časovna zapletenost: O(N * M), kjer je N skupno število vrstic in M skupno število stolpcev
Pomožni prostor: O(N * M)