Najmanjše število izbrisov, da naredite razvrščeno zaporedje

Najmanjše število izbrisov, da naredite razvrščeno zaporedje
Preizkusite na GfG Practice #practiceLinkDiv { display: none !important; }

Podana je matrika n celih števil. Naloga je odstraniti ali izbrisati najmanjše število elementov iz matrike, tako da, ko so preostali elementi postavljeni v istem zaporednem vrstnem redu, tvorijo naraščajoče razvrščeno zaporedje .

Primeri:  

 Input : {5 6 1 7 4}   
Output : 2
Removing 1 and 4
leaves the remaining sequence order as
5 6 7 which is a sorted sequence.
Input : {30 40 2 5 1 7 45 50 8}
Output : 4
Recommended Practice Najmanjše število izbrisov, da naredite razvrščeno zaporedje Poskusite!


A preprosta rešitev je odstraniti vsa podzaporedja enega za drugim in preverite, ali je preostali niz elementov v razvrščenem vrstnem redu ali ne. Časovna zahtevnost te rešitve je eksponentna.

An učinkovit pristop uporablja koncept iskanje dolžine najdaljšega naraščajočega podzaporedja danega zaporedja.

Algoritem:  

 -->     arr     be the given array.   
--> n number of elements in arr .
--> len be the length of longest
increasing subsequence in arr .
-->// minimum number of deletions
min = n - len
C++
   // C++ implementation to find    // minimum number of deletions    // to make a sorted sequence   #include          using     namespace     std  ;   /* lis() returns the length    of the longest increasing     subsequence in arr[] of size n */   int     lis  (     int     arr  []     int     n     )   {      int     result     =     0  ;      int     lis  [  n  ];      /* Initialize LIS values    for all indexes */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      lis  [  i  ]     =     1  ;      /* Compute optimized LIS     values in bottom up manner */      for     (  int     i     =     1  ;     i      <     n  ;     i  ++     )      for     (  int     j     =     0  ;     j      <     i  ;     j  ++     )      if     (     arr  [  i  ]     >     arr  [  j  ]     &&      lis  [  i  ]      <     lis  [  j  ]     +     1  )      lis  [  i  ]     =     lis  [  j  ]     +     1  ;      /* Pick resultimum     of all LIS values */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      if     (  result      <     lis  [  i  ])      result     =     lis  [  i  ];      return     result  ;   }   // function to calculate minimum   // number of deletions   int     minimumNumberOfDeletions  (  int     arr  []         int     n  )   {      // Find longest increasing       // subsequence      int     len     =     lis  (  arr       n  );      // After removing elements       // other than the lis we       // get sorted sequence.      return     (  n     -     len  );   }   // Driver Code   int     main  ()   {      int     arr  []     =     {  30       40       2       5       1        7       45       50       8  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Minimum number of deletions = '       < <     minimumNumberOfDeletions  (  arr       n  );      return     0  ;   }   
Java
   // Java implementation to find   // minimum number of deletions    // to make a sorted sequence   class   GFG   {      /* lis() returns the length     of the longest increasing     subsequence in arr[] of size n */      static     int     lis  (     int     arr  []       int     n     )      {      int     result     =     0  ;      int  []     lis     =     new     int  [  n  ]  ;          /* Initialize LIS values     for all indexes */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      lis  [  i  ]     =     1  ;          /* Compute optimized LIS     values in bottom up manner */      for     (  int     i     =     1  ;     i      <     n  ;     i  ++     )      for     (  int     j     =     0  ;     j      <     i  ;     j  ++     )      if     (     arr  [  i  ]     >     arr  [  j  ]     &&      lis  [  i  ]      <     lis  [  j  ]     +     1  )      lis  [  i  ]     =     lis  [  j  ]     +     1  ;          /* Pick resultimum of    all LIS values */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      if     (  result      <     lis  [  i  ]  )      result     =     lis  [  i  ]  ;          return     result  ;      }          // function to calculate minimum      // number of deletions      static     int     minimumNumberOfDeletions  (  int     arr  []           int     n  )      {      // Find longest       // increasing subsequence      int     len     =     lis  (  arr       n  );          // After removing elements       // other than the lis we get      // sorted sequence.      return     (  n     -     len  );      }      // Driver Code      public     static     void     main     (  String  []     args  )         {      int     arr  []     =     {  30       40       2       5       1        7       45       50       8  };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Minimum number of'     +      ' deletions = '     +      minimumNumberOfDeletions  (  arr       n  ));      }   }   /* This code is contributed by Harsh Agarwal */   
Python3
   # Python3 implementation to find    # minimum number of deletions to   # make a sorted sequence   # lis() returns the length    # of the longest increasing   # subsequence in arr[] of size n   def   lis  (  arr     n  ):   result   =   0   lis   =   [  0   for   i   in   range  (  n  )]   # Initialize LIS values   # for all indexes    for   i   in   range  (  n  ):   lis  [  i  ]   =   1   # Compute optimized LIS values    # in bottom up manner    for   i   in   range  (  1     n  ):   for   j   in   range  (  i  ):   if   (   arr  [  i  ]   >   arr  [  j  ]   and   lis  [  i  ]    <   lis  [  j  ]   +   1  ):   lis  [  i  ]   =   lis  [  j  ]   +   1   # Pick resultimum    # of all LIS values    for   i   in   range  (  n  ):   if   (  result    <   lis  [  i  ]):   result   =   lis  [  i  ]   return   result   # Function to calculate minimum   # number of deletions   def   minimumNumberOfDeletions  (  arr     n  ):   # Find longest increasing    # subsequence   len   =   lis  (  arr     n  )   # After removing elements    # other than the lis we    # get sorted sequence.   return   (  n   -   len  )   # Driver Code   arr   =   [  30     40     2     5     1     7     45     50     8  ]   n   =   len  (  arr  )   print  (  'Minimum number of deletions = '     minimumNumberOfDeletions  (  arr     n  ))   # This code is contributed by Anant Agarwal.   
C#
   // C# implementation to find   // minimum number of deletions    // to make a sorted sequence   using     System  ;   class     GfG      {          /* lis() returns the length of    the longest increasing subsequence    in arr[] of size n */      static     int     lis  (     int     []  arr       int     n     )      {      int     result     =     0  ;      int  []     lis     =     new     int  [  n  ];          /* Initialize LIS values for    all indexes */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      lis  [  i  ]     =     1  ;          /* Compute optimized LIS values    in bottom up manner */      for     (  int     i     =     1  ;     i      <     n  ;     i  ++     )      for     (  int     j     =     0  ;     j      <     i  ;     j  ++     )      if     (     arr  [  i  ]     >     arr  [  j  ]     &&      lis  [  i  ]      <     lis  [  j  ]     +     1  )      lis  [  i  ]     =     lis  [  j  ]     +     1  ;          /* Pick resultimum of all LIS    values */      for     (  int     i     =     0  ;     i      <     n  ;     i  ++     )      if     (  result      <     lis  [  i  ])      result     =     lis  [  i  ];          return     result  ;      }          // function to calculate minimum      // number of deletions      static     int     minimumNumberOfDeletions  (      int     []  arr       int     n  )      {          // Find longest increasing      // subsequence      int     len     =     lis  (  arr       n  );          // After removing elements other      // than the lis we get sorted      // sequence.      return     (  n     -     len  );      }      // Driver Code      public     static     void     Main     (  String  []     args  )         {      int     []  arr     =     {  30       40       2       5       1           7       45       50       8  };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Minimum number of'     +         ' deletions = '     +         minimumNumberOfDeletions  (  arr       n  ));      }   }   // This code is contributed by parashar.   
JavaScript
    <  script  >   // javascript implementation to find   // minimum number of deletions   // to make a sorted sequence   /* lis() returns the length   of the longest increasing   subsequence in arr[] of size n */   function     lis  (  arr    n  )   {      let     result     =     0  ;      let     lis  =     new     Array  (  n  );      /* Initialize LIS values    for all indexes */      for     (  let     i     =     0  ;     i      <     n  ;     i  ++     )      lis  [  i  ]     =     1  ;      /* Compute optimized LIS    values in bottom up manner */      for     (  let     i     =     1  ;     i      <     n  ;     i  ++     )      for     (  let     j     =     0  ;     j      <     i  ;     j  ++     )      if     (     arr  [  i  ]     >     arr  [  j  ]     &&      lis  [  i  ]      <     lis  [  j  ]     +     1  )      lis  [  i  ]     =     lis  [  j  ]     +     1  ;      /* Pick resultimum    of all LIS values */      for     (  let     i     =     0  ;     i      <     n  ;     i  ++     )      if     (  result      <     lis  [  i  ])      result     =     lis  [  i  ];      return     result  ;   }   // function to calculate minimum   // number of deletions   function     minimumNumberOfDeletions  (  arr    n  )   {      // Find longest increasing      // subsequence      let     len     =     lis  (  arr    n  );      // After removing elements      // other than the lis we      // get sorted sequence.      return     (  n     -     len  );   }      let     arr     =     [  30       40       2       5       1    7       45       50       8  ];      let     n     =     arr  .  length  ;      document  .  write  (  'Minimum number of deletions = '      +     minimumNumberOfDeletions  (  arr    n  ));   // This code is contributed by vaibhavrabadiya117.    <  /script>   
PHP
      // PHP implementation to find    // minimum number of deletions    // to make a sorted sequence   /* lis() returns the length of     the longest increasing subsequence    in arr[] of size n */   function   lis  (   $arr     $n   )   {   $result   =   0  ;   $lis  [  $n  ]   =   0  ;   /* Initialize LIS values    for all indexes */   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++   )   $lis  [  $i  ]   =   1  ;   /* Compute optimized LIS     values in bottom up manner */   for   (  $i   =   1  ;   $i    <   $n  ;   $i  ++   )   for   (  $j   =   0  ;   $j    <   $i  ;   $j  ++   )   if   (   $arr  [  $i  ]   >   $arr  [  $j  ]   &&   $lis  [  $i  ]    <   $lis  [  $j  ]   +   1  )   $lis  [  $i  ]   =   $lis  [  $j  ]   +   1  ;   /* Pick resultimum of     all LIS values */   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++   )   if   (  $result    <   $lis  [  $i  ])   $result   =   $lis  [  $i  ];   return   $result  ;   }   // function to calculate minimum   // number of deletions   function   minimumNumberOfDeletions  (  $arr     $n  )   {   // Find longest increasing   // subsequence   $len   =   lis  (  $arr     $n  );   // After removing elements    // other than the lis we   // get sorted sequence.   return   (  $n   -   $len  );   }   // Driver Code   $arr   =   array  (  30     40     2     5     1     7     45     50     8  );   $n   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   'Minimum number of deletions = '      minimumNumberOfDeletions  (  $arr     $n  );   // This code is contributed by nitin mittal.   ?>   

Izhod
Minimum number of deletions = 4 

Časovna zapletenost: O(n 2 )
Pomožni prostor: O(n)

Časovno zapletenost lahko zmanjšate na O(nlogn), tako da poiščete Najdaljša rastoča velikost podzaporedja (N Log N)
Ta članek je prispeval Ayush Jauhari .

Pristop št. 2: Uporaba najdaljšega naraščajočega podzaporedja

Eden od pristopov za rešitev tega problema je, da poiščemo dolžino najdaljšega naraščajočega podzaporedja (LIS) dane matrike in jo odštejemo od dolžine matrike. Razlika nam daje najmanjše število izbrisov, potrebnih za razvrščanje matrike.

Algoritem

1. Izračunajte dolžino najdaljšega naraščajočega podzaporedja (LIS) niza.
2. Od dolžine niza odštejte dolžino LIS.
3. Vrnite razliko, dobljeno v koraku 2, kot rezultat.

C++
   #include          #include         #include          // Required for max_element   using     namespace     std  ;   // Function to find the minimum number of deletions   int     minDeletions  (  vector   <  int  >     arr  )     {      int     n     =     arr  .  size  ();      vector   <  int  >     lis  (  n       1  );     // Initialize LIS array with 1          // Calculate LIS values      for     (  int     i     =     1  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     i  ;     ++  j  )     {      if     (  arr  [  i  ]     >     arr  [  j  ])     {      lis  [  i  ]     =     max  (  lis  [  i  ]     lis  [  j  ]     +     1  );     // Update LIS value      }      }      }          // Find the maximum length of LIS      int     maxLength     =     *  max_element  (  lis  .  begin  ()     lis  .  end  ());          // Return the minimum number of deletions      return     n     -     maxLength  ;   }   //Driver code   int     main  ()     {      vector   <  int  >     arr     =     {  5       6       1       7       4  };          // Call the minDeletions function and print the result      cout      < <     minDeletions  (  arr  )      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      public     static     int     minDeletions  (  int  []     arr  )     {      int     n     =     arr  .  length  ;      int  []     lis     =     new     int  [  n  ]  ;      Arrays  .  fill  (  lis       1  );     // Initialize the LIS array with all 1's          for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     i  ;     j  ++  )     {      if     (  arr  [  i  ]     >     arr  [  j  ]  )     {      lis  [  i  ]     =     Math  .  max  (  lis  [  i  ]       lis  [  j  ]     +     1  );      }      }      }          return     n     -     Arrays  .  stream  (  lis  ).  max  ().  getAsInt  ();     // Return the number of elements to delete      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {  5       6       1       7       4  };      System  .  out  .  println  (  minDeletions  (  arr  ));     // Output: 2      }   }   
Python3
   def   min_deletions  (  arr  ):   n   =   len  (  arr  )   lis   =   [  1  ]   *   n   for   i   in   range  (  1     n  ):   for   j   in   range  (  i  ):   if   arr  [  i  ]   >   arr  [  j  ]:   lis  [  i  ]   =   max  (  lis  [  i  ]   lis  [  j  ]   +   1  )   return   n   -   max  (  lis  )   arr   =   [  5     6     1     7     4  ]   print  (  min_deletions  (  arr  ))   
C#
   using     System  ;   using     System.Collections.Generic  ;   using     System.Linq  ;   namespace     MinDeletionsExample   {      class     Program      {      static     int     MinDeletions  (  List   <  int  >     arr  )      {      int     n     =     arr  .  Count  ;      List   <  int  >     lis     =     Enumerable  .  Repeat  (  1       n  ).  ToList  ();     // Initialize LIS array with 1      // Calculate LIS values      for     (  int     i     =     1  ;     i      <     n  ;     ++  i  )      {      for     (  int     j     =     0  ;     j      <     i  ;     ++  j  )      {      if     (  arr  [  i  ]     >     arr  [  j  ])      {      lis  [  i  ]     =     Math  .  Max  (  lis  [  i  ]     lis  [  j  ]     +     1  );     // Update LIS value      }      }      }      // Find the maximum length of LIS      int     maxLength     =     lis  .  Max  ();      // Return the minimum number of deletions      return     n     -     maxLength  ;      }      // Driver Code      static     void     Main  (  string  []     args  )      {      List   <  int  >     arr     =     new     List   <  int  >     {     5       6       1       7       4     };      // Call the MinDeletions function and print the result      Console  .  WriteLine  (  MinDeletions  (  arr  ));      // Keep console window open until a key is pressed      Console  .  ReadKey  ();      }      }   }   
JavaScript
   function     minDeletions  (  arr  )     {      let     n     =     arr  .  length  ;      let     lis     =     new     Array  (  n  ).  fill  (  1  );      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     i  ;     j  ++  )     {      if     (  arr  [  i  ]     >     arr  [  j  ])     {      lis  [  i  ]     =     Math  .  max  (  lis  [  i  ]     lis  [  j  ]     +     1  );      }      }      }      return     n     -     Math  .  max  (...  lis  );   }   let     arr     =     [  5       6       1       7       4  ];   console  .  log  (  minDeletions  (  arr  ));      

Izhod
2 

Časovna kompleksnost: O(n^2), kjer je n dolžina niza
Kompleksnost prostora: O(n), kjer je n dolžina niza

Pristop #3: Uporaba binarnega iskanja

Ta pristop uporablja binarno iskanje za iskanje pravilnega položaja za vstavljanje danega elementa v podzaporedje.

Algoritem

1. Inicializirajte seznam 'sub' s prvim elementom vhodnega seznama.
2. Za vsak naslednji element na vhodnem seznamu, če je večji od zadnjega elementa v 'sub', ga dodajte 'sub'.
3. V nasprotnem primeru uporabite binarno iskanje, da poiščete pravilen položaj za vstavljanje elementa v 'sub'.
4. Najmanjše zahtevano število izbrisov je enako dolžini vhodnega seznama minus dolžina 'sub'.

C++
   #include          #include         using     namespace     std  ;   // Function to find the minimum number of deletions to make a strictly increasing subsequence   int     minDeletions  (  vector   <  int  >&     arr  )     {      int     n     =     arr  .  size  ();      vector   <  int  >     sub  ;     // Stores the longest increasing subsequence          sub  .  push_back  (  arr  [  0  ]);     // Initialize the subsequence with the first element of the array          for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     sub  .  back  ())     {      // If the current element is greater than the last element of the subsequence      // it can be added to the subsequence to make it longer.      sub  .  push_back  (  arr  [  i  ]);      }     else     {      int     index     =     -1  ;     // Initialize index to -1      int     val     =     arr  [  i  ];     // Current element value      int     l     =     0       r     =     sub  .  size  ()     -     1  ;     // Initialize left and right pointers for binary search          // Binary search to find the index where the current element can be placed in the subsequence      while     (  l      <=     r  )     {      int     mid     =     (  l     +     r  )     /     2  ;     // Calculate the middle index          if     (  sub  [  mid  ]     >=     val  )     {      index     =     mid  ;     // Update the index if the middle element is greater or equal to the current element      r     =     mid     -     1  ;     // Move the right pointer to mid - 1      }     else     {      l     =     mid     +     1  ;     // Move the left pointer to mid + 1      }      }          if     (  index     !=     -1  )     {      sub  [  index  ]     =     val  ;     // Replace the element at the found index with the current element      }      }      }      // The minimum number of deletions is equal to the difference between the input array size and the size of the longest increasing subsequence      return     n     -     sub  .  size  ();   }   int     main  ()     {      vector   <  int  >     arr     =     {  30       40       2       5       1       7       45       50       8  };      int     output     =     minDeletions  (  arr  );      cout      < <     output      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.ArrayList  ;   public     class   Main     {      // Function to find the minimum number of deletions to make a strictly increasing subsequence      static     int     minDeletions  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      ArrayList   <  Integer  >     sub     =     new     ArrayList   <>  ();     // Stores the longest increasing subsequence      sub  .  add  (  arr  .  get  (  0  ));     // Initialize the subsequence with the first element of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  .  get  (  i  )     >     sub  .  get  (  sub  .  size  ()     -     1  ))     {      // If the current element is greater than the last element of the subsequence      // it can be added to the subsequence to make it longer.      sub  .  add  (  arr  .  get  (  i  ));      }     else     {      int     index     =     -  1  ;     // Initialize index to -1      int     val     =     arr  .  get  (  i  );     // Current element value      int     l     =     0       r     =     sub  .  size  ()     -     1  ;     // Initialize left and right pointers for binary search      // Binary search to find the index where the current element can be placed in the subsequence      while     (  l      <=     r  )     {      int     mid     =     (  l     +     r  )     /     2  ;     // Calculate the middle index      if     (  sub  .  get  (  mid  )     >=     val  )     {      index     =     mid  ;     // Update the index if the middle element is greater or equal to the current element      r     =     mid     -     1  ;     // Move the right pointer to mid - 1      }     else     {      l     =     mid     +     1  ;     // Move the left pointer to mid + 1      }      }      if     (  index     !=     -  1  )     {      sub  .  set  (  index       val  );     // Replace the element at the found index with the current element      }      }      }      // The minimum number of deletions is equal to the difference between the input array size and the size of the longest increasing subsequence      return     n     -     sub  .  size  ();      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  30  );      arr  .  add  (  40  );      arr  .  add  (  2  );      arr  .  add  (  5  );      arr  .  add  (  1  );      arr  .  add  (  7  );      arr  .  add  (  45  );      arr  .  add  (  50  );      arr  .  add  (  8  );      int     output     =     minDeletions  (  arr  );      System  .  out  .  println  (  output  );      }   }   
Python3
   def   min_deletions  (  arr  ):   def   ceil_index  (  sub     val  ):   l     r   =   0     len  (  sub  )  -  1   while   l    <=   r  :   mid   =   (  l   +   r  )   //   2   if   sub  [  mid  ]   >=   val  :   r   =   mid   -   1   else  :   l   =   mid   +   1   return   l   sub   =   [  arr  [  0  ]]   for   i   in   range  (  1     len  (  arr  )):   if   arr  [  i  ]   >   sub  [  -  1  ]:   sub  .  append  (  arr  [  i  ])   else  :   sub  [  ceil_index  (  sub     arr  [  i  ])]   =   arr  [  i  ]   return   len  (  arr  )   -   len  (  sub  )   arr   =   [  30     40     2     5     1     7     45     50     8  ]   output   =   min_deletions  (  arr  )   print  (  output  )   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     Program   {      // Function to find the minimum number of deletions to make a strictly increasing subsequence      static     int     MinDeletions  (  List   <  int  >     arr  )      {      int     n     =     arr  .  Count  ;      List   <  int  >     sub     =     new     List   <  int  >  ();     // Stores the longest increasing subsequence      sub  .  Add  (  arr  [  0  ]);     // Initialize the subsequence with the first element of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      if     (  arr  [  i  ]     >     sub  [  sub  .  Count     -     1  ])      {      // If the current element is greater than the last element of the subsequence      // it can be added to the subsequence to make it longer.      sub  .  Add  (  arr  [  i  ]);      }      else      {      int     index     =     -  1  ;     // Initialize index to -1      int     val     =     arr  [  i  ];     // Current element value      int     l     =     0       r     =     sub  .  Count     -     1  ;     // Initialize left and right       // pointers for binary search      // Binary search to find the index where the current element       // can be placed in the subsequence      while     (  l      <=     r  )      {      int     mid     =     (  l     +     r  )     /     2  ;     // Calculate the middle index      if     (  sub  [  mid  ]     >=     val  )      {      index     =     mid  ;     // Update the index if the middle element is       // greater or equal to the current element      r     =     mid     -     1  ;     // Move the right pointer to mid - 1      }      else      {      l     =     mid     +     1  ;     // Move the left pointer to mid + 1      }      }      if     (  index     !=     -  1  )      {      sub  [  index  ]     =     val  ;     // Replace the element at the found index       // with the current element      }      }      }      // The minimum number of deletions is equal to the difference       // between the input list size and the size of the       // longest increasing subsequence      return     n     -     sub  .  Count  ;      }   // Driver code      static     void     Main  ()      {      List   <  int  >     arr     =     new     List   <  int  >     {     30       40       2       5       1       7       45       50       8     };      int     output     =     MinDeletions  (  arr  );      Console  .  WriteLine  (  output  );      Console  .  ReadLine  ();      }   }   
JavaScript
   // Function to find the minimum number of deletions to make a strictly increasing subsequence   function     minDeletions  (  arr  )     {      let     n     =     arr  .  length  ;      let     sub     =     [];     // Stores the longest increasing subsequence      sub  .  push  (  arr  [  0  ]);     // Initialize the subsequence with the first element of the array      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     sub  [  sub  .  length     -     1  ])     {      // If the current element is greater than the last element of the subsequence      // it can be added to the subsequence to make it longer.      sub  .  push  (  arr  [  i  ]);      }     else     {      let     index     =     -  1  ;     // Initialize index to -1      let     val     =     arr  [  i  ];     // Current element value      let     l     =     0       r     =     sub  .  length     -     1  ;     // Initialize left and right pointers for binary search      // Binary search to find the index where the current element can be placed       // in the subsequence      while     (  l      <=     r  )     {      let     mid     =     Math  .  floor  ((  l     +     r  )     /     2  );     // Calculate the middle index      if     (  sub  [  mid  ]     >=     val  )     {      index     =     mid  ;     // Update the index if the middle element is greater       //or equal to the current element      r     =     mid     -     1  ;     // Move the right pointer to mid - 1      }     else     {      l     =     mid     +     1  ;     // Move the left pointer to mid + 1      }      }      if     (  index     !==     -  1  )     {      sub  [  index  ]     =     val  ;     // Replace the element at the found index with the current element      }      }      }      // The minimum number of deletions is equal to the difference      //between the input array size and the size of the longest increasing subsequence      return     n     -     sub  .  length  ;   }   let     arr     =     [  30       40       2       5       1       7       45       50       8  ];   let     output     =     minDeletions  (  arr  );   console  .  log  (  output  );   

Izhod
4 

Časovna kompleksnost: O(n log n)

Pomožni prostor: O(n)

Ustvari kviz