Súčet priemeru všetkých podmnožín

Súčet priemeru všetkých podmnožín
Vyskúšajte to na GfG Practice #practiceLinkDiv { display: none !important; }

Dané pole arr[] s N celočíselnými prvkami je úlohou nájsť súčet priemeru všetkých podmnožín tohto poľa.

Príklad:   

 Input : arr[] = [2 3 5]   
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33 Recommended Practice Súčet priemeru všetkých podmnožín Skúste to!

Naivný prístup: Naivným riešením je iterovať všetky možné podmnožiny priemer zo všetkých a potom ich pridávajte jeden po druhom, ale to bude trvať exponenciálne a pre väčšie polia to nebude možné. 
Vzor môžeme získať na príklade  



 arr = [a0 a1 a2 a3]   
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Koeficient s čitateľmi možno vysvetliť nasledovne, za predpokladu, že iterujeme cez podmnožiny s K prvkami, potom menovateľ bude K a čitateľ bude r*S, kde „r“ označuje, koľkokrát bude pridaný konkrétny prvok poľa pri iterácii cez podmnožiny rovnakej veľkosti. Kontrolou môžeme vidieť, že r bude nCr(N - 1 n - 1), pretože po umiestnení jedného prvku do súčtu musíme vybrať (n – 1) prvkov z (N - 1) prvkov, takže každý prvok bude mať frekvenciu nCr (N - 1 n - 1) pri zohľadnení podmnožín rovnakej veľkosti, ako sa všetky prvky zúčastňujú na sčítaní, počet bude rovnaký. výraz. 

V nižšie uvedenom kóde nCr je implementovaný pomocou metódy dynamického programovania viac si o tom môžete prečítať tu 

C++
   // C++ program to get sum of average of all subsets   #include          using     namespace     std  ;   // Returns value of Binomial Coefficient C(n k)   int     nCr  (  int     n       int     k  )   {      int     C  [  n     +     1  ][  k     +     1  ];      int     i       j  ;      // Calculate value of Binomial Coefficient in bottom      // up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using previously stored      // values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];   }   // method returns sum of average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;     // Initialize result      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   // java program to get sum of   // average of all subsets   import     java.io.*  ;   class   GFG     {      // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int     C  [][]     =     new     int  [  n     +     1  ][  k     +     1  ]  ;      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ]  ;      }      }      return     C  [  n  ][  k  ]  ;      }      // method returns sum of average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     2       3       5       7     };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by vt_m   
C#
   // C# program to get sum of   // average of all subsets   using     System  ;   class     GFG     {          // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int  [     ]     C     =     new     int  [  n     +     1       k     +     1  ];      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  Min  (  i       k  );     j  ++  )         {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i       j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i       j  ]     =     C  [  i     -     1       j     -     1  ]     +     C  [  i     -     1       j  ];      }      }      return     C  [  n       k  ];      }      // method returns sum of average       // of all subsets      static     double     resultOfAllSubsets  (  int  []     arr       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset       // of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by Sam007   
JavaScript
    <  script  >      // javascript program to get sum of      // average of all subsets          // Returns value of Binomial      // Coefficient C(n k)      function     nCr  (  n       k  )      {      let     C     =     new     Array  (  n     +     1  );      for     (  let     i     =     0  ;     i      <=     n  ;     i  ++  )         {      C  [  i  ]     =     new     Array  (  k     +     1  );      for     (  let     j     =     0  ;     j      <=     k  ;     j  ++  )         {      C  [  i  ][  j  ]     =     0  ;      }      }      let     i       j  ;          // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;          // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];      }          // method returns sum of average of all subsets      function     resultOfAllSubsets  (  arr       N  )      {      // Initialize result      let     result     =     0.0  ;          // Find sum of elements      let     sum     =     0  ;      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];          // looping once for all subset of same size      for     (  let     n     =     1  ;     n      <=     N  ;     n  ++  )          /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;          return     result  ;      }          let     arr     =     [     2       3       5       7     ];      let     N     =     arr  .  length  ;      document  .  write  (  resultOfAllSubsets  (  arr       N  ));        <  /script>   
PHP
      // PHP program to get sum    // of average of all subsets   // Returns value of Binomial   // Coefficient C(n k)   function   nCr  (  $n     $k  )   {   $C  [  $n   +   1  ][  $k   +   1  ]   =   0  ;   $i  ;   $j  ;   // Calculate value of Binomial   // Coefficient in bottom up manner   for   (  $i   =   0  ;   $i    <=   $n  ;   $i  ++  )   {   for   (  $j   =   0  ;   $j    <=   min  (  $i     $k  );   $j  ++  )   {   // Base Cases   if   (  $j   ==   0   ||   $j   ==   $i  )   $C  [  $i  ][  $j  ]   =   1  ;   // Calculate value using    // previously stored values   else   $C  [  $i  ][  $j  ]   =   $C  [  $i   -   1  ][  $j   -   1  ]   +   $C  [  $i   -   1  ][  $j  ];   }   }   return   $C  [  $n  ][  $k  ];   }   // method returns sum of   // average of all subsets   function   resultOfAllSubsets  (  $arr     $N  )   {   // Initialize result   $result   =   0.0  ;   // Find sum of elements   $sum   =   0  ;   for   (  $i   =   0  ;   $i    <   $N  ;   $i  ++  )   $sum   +=   $arr  [  $i  ];   // looping once for all    // subset of same size   for   (  $n   =   1  ;   $n    <=   $N  ;   $n  ++  )   /* each element occurs nCr(N-1     n-1) times while considering     subset of size n */   $result   +=   ((  $sum   *   (  nCr  (  $N   -   1     $n   -   1  )))   /   $n  );   return   $result  ;   }   // Driver Code   $arr   =   array  (   2     3     5     7   );   $N   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   resultOfAllSubsets  (  $arr     $N  )   ;   // This code is contributed by nitin mittal.    ?>   
Python3
   # Python3 program to get sum   # of average of all subsets   # Returns value of Binomial   # Coefficient C(n k)   def   nCr  (  n     k  ):   C   =   [[  0   for   i   in   range  (  k   +   1  )]   for   j   in   range  (  n   +   1  )]   # Calculate value of Binomial    # Coefficient in bottom up manner   for   i   in   range  (  n   +   1  ):   for   j   in   range  (  min  (  i     k  )   +   1  ):   # Base Cases   if   (  j   ==   0   or   j   ==   i  ):   C  [  i  ][  j  ]   =   1   # Calculate value using    # previously stored values   else  :   C  [  i  ][  j  ]   =   C  [  i  -  1  ][  j  -  1  ]   +   C  [  i  -  1  ][  j  ]   return   C  [  n  ][  k  ]   # Method returns sum of   # average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   # Initialize result   # Find sum of elements   sum   =   0   for   i   in   range  (  N  ):   sum   +=   arr  [  i  ]   # looping once for all subset of same size   for   n   in   range  (  1     N   +   1  ):   # each element occurs nCr(N-1 n-1) times while   # considering subset of size n */   result   +=   (  sum   *   (  nCr  (  N   -   1     n   -   1  )))   /   n   return   result   # Driver code    arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   # This code is contributed by Anant Agarwal.   

Výstup
63.75 

Časová zložitosť: O(n 3 )
Pomocný priestor: O(n 2 )

Efektívny prístup: Optimalizácia priestoru O(1)
Na optimalizáciu priestorovej zložitosti vyššie uvedeného prístupu môžeme použiť efektívnejší prístup, ktorý eliminuje potrebu celej matice C[][] uložiť binomické koeficienty. Namiesto toho môžeme použiť kombinovaný vzorec na výpočet binomického koeficientu priamo v prípade potreby.

Kroky implementácie:

  • Iterujte prvky poľa a vypočítajte súčet všetkých prvkov.
  • Opakujte každú veľkosť podmnožiny od 1 do N.
  • Vo vnútri slučky vypočítajte priemer súčtu prvkov vynásobeného binomickým koeficientom pre veľkosť podmnožiny. K výsledku pridajte vypočítaný priemer.
  • Vráťte konečný výsledok.

Implementácia:

C++
   #include          using     namespace     std  ;   // Method to calculate binomial coefficient C(n k)   int     binomialCoeff  (  int     n       int     k  )   {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Method to calculate the sum of the average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;   }   // Driver code to test the above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // Method to calculate binomial coefficient C(n k)      static     int     binomialCoeff  (  int     n       int     k  )     {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )     {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )     (  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     main  (  String  []     args  )     {      int     arr  []     =     {  2       3       5       7  };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   
C#
   using     System  ;   public     class     MainClass   {      // Method to calculate binomial coefficient C(n k)      static     int     BinomialCoeff  (  int     n       int     k  )      {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     ResultOfAllSubsets  (  int  []     arr       int     N  )      {      double     result     =     0.0  ;      int     sumVal     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sumVal     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sumVal     *     BinomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  ResultOfAllSubsets  (  arr       N  ));      }   }   
JavaScript
   // Function to calculate binomial coefficient C(n k)   function     binomialCoeff  (  n       k  )     {      let     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Function to calculate the sum of the average of all subsets   function     resultOfAllSubsets  (  arr  )     {      let     result     =     0.0  ;      let     sum     =     arr  .  reduce  ((  acc       val  )     =>     acc     +     val       0  );      // Loop for each subset size      for     (  let     n     =     1  ;     n      <=     arr  .  length  ;     n  ++  )     {      result     +=     (  sum     *     binomialCoeff  (  arr  .  length     -     1       n     -     1  ))     /     n  ;      }      return     result  ;   }   const     arr     =     [  2       3       5       7  ];   console  .  log  (  resultOfAllSubsets  (  arr  ));   
Python3
   # Method to calculate binomial coefficient C(n k)   def   binomialCoeff  (  n     k  ):   res   =   1   # Since C(n k) = C(n n-k)   if   k   >   n   -   k  :   k   =   n   -   k   # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]   for   i   in   range  (  k  ):   res   *=   (  n   -   i  )   res   //=   (  i   +   1  )   return   res   # Method to calculate the sum of the average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   sum_val   =   0   # Calculate the sum of elements   for   i   in   range  (  N  ):   sum_val   +=   arr  [  i  ]   # Loop for each subset size   for   n   in   range  (  1     N   +   1  ):   result   +=   (  sum_val   *   binomialCoeff  (  N   -   1     n   -   1  ))   /   n   return   result   # Driver code to test the above methods   arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   


Výstup

 63.75  

Časová zložitosť: O(n^2)
Pomocný priestor: O(1)



 

Vytvoriť kvíz

Najlepšie Články

Kategórie

Zaujímavé Články