Minimálny počet krokov na dosiahnutie cieľa rytierom | Súprava 2

Minimálny počet krokov na dosiahnutie cieľa rytierom | Súprava 2

Vzhľadom na štvorcovú šachovnicu s veľkosťou N x N je pozícia jazdca a pozícia cieľa daná úlohou je zistiť minimálny počet krokov, ktoré musí jazdec urobiť, aby dosiahol cieľovú pozíciu.
 

Minimálny počet krokov na dosiahnutie cieľa rytierom | Súprava 2


Príklady: 
 

Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3 


 


BFS prístup na vyriešenie vyššie uvedeného problému už bol diskutovaný v predchádzajúce príspevok. V tomto príspevku sa diskutuje o riešení dynamického programovania.
Vysvetlenie prístupu:  
 

    Prípad 1: Ak cieľ nie je pozdĺž jedného radu alebo jedného stĺpca pozície rytiera. 
    Nechajte šachovnicu 8 x 8 buniek. Teraz povedzme, že rytier je na (3 3) a cieľ je na (7 8). Z aktuálnej pozície rytiera je možných 8 ťahov, t.j. (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Ale spomedzi týchto iba dva ťahy (5 4) a (4 5) budú smerovať k cieľu a všetky ostatné idú preč od cieľa. Ak chcete nájsť minimálny počet krokov, prejdite na (4 5) alebo (5 4). Teraz vypočítajte minimálne kroky z (4 5) a (5 4), aby ste dosiahli cieľ. Toto je vypočítané dynamickým programovaním. Výsledkom sú minimálne kroky od (3 3) do (7 8). Prípad 2: Ak je cieľ pozdĺž jedného radu alebo jedného stĺpca pozície rytiera. 
    Nechajte šachovnicu 8 x 8 buniek. Teraz povedzme, že rytier je na (4 3) a cieľ je na (4 7). Je možných 8 ťahov, ale smerom k cieľu sú to len 4 ťahy, t.j. (5 5) (3 5) (2 4) (6 4). Ako (5 5) je ekvivalentné (3 5) a (2 4) je ekvivalentné (6 4). Takže z týchto 4 bodov sa to dá premeniť na 2 body. Prijímanie (5 5) a (6 4) (tu). Teraz vypočítajte minimálny počet krokov vykonaných z týchto dvoch bodov na dosiahnutie cieľa. Toto je vypočítané dynamickým programovaním. Výsledkom sú minimálne kroky od (4 3) do (4 7).


Výnimka: Keď bude rytier v rohu a cieľ je taký, že rozdiel súradníc x a y s pozíciou rytiera je (1 1) alebo naopak. Potom budú minimálne kroky 4.
Dynamická programovacia rovnica: 
 

1) dp[diffOfX][diffOfY] je minimálny počet krokov vykonaných z pozície rytiera do pozície cieľa.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
kde diffOfX = rozdiel medzi súradnicou x rytiera a súradnicou x cieľa 
diffOfY = rozdiel medzi rytierovou súradnicou y a súradnicou y cieľa 
 


Nižšie je uvedená implementácia vyššie uvedeného prístupu: 
 

C++
   // C++ code for minimum steps for   // a knight to reach target position   #include          using     namespace     std  ;   // initializing the matrix.   int     dp  [  8  ][  8  ]     =     {     0     };   int     getsteps  (  int     x       int     y           int     tx       int     ty  )   {      // if knight is on the target       // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     !=     0  )      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      int     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).      dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     =         min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [  abs  (  y     -     ty  )][  abs  (  x     -     tx  )]     =         dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      }      }   }   // Driver Code   int     main  ()   {      int     i       n       x       y       tx       ty       ans  ;          // size of chess board n*n      n     =     100  ;          // (x y) coordinate of the knight.      // (tx ty) coordinate of the target position.      x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.      if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||         (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||         (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||         (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;      else     {      // dp[a][b] here a b is the difference of      // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      cout      < <     ans      < <     endl  ;      return     0  ;   }   
Java
   //Java code for minimum steps for    // a knight to reach target position    public     class   GFG     {   // initializing the matrix.       static     int     dp  [][]     =     new     int  [  8  ][  8  ]  ;      static     int     getsteps  (  int     x       int     y        int     tx       int     ty  )     {      // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {      return     dp  [  0  ][  0  ]  ;      }     else     // if already calculated then return       // that value. Taking absolute difference.       if     (  dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]     !=     0  )     {      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }     else     {      // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;      // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]      =     Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;      // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .  abs  (  y     -     ty  )  ][     Math  .  abs  (  x     -     tx  )  ]      =     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }      }   // Driver Code       static     public     void     main  (  String  []     args  )     {      int     i       n       x       y       tx       ty       ans  ;      // size of chess board n*n       n     =     100  ;      // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )      ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )      ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )      ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )      ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     {      // dp[a][b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      System  .  out  .  println  (  ans  );      }   }   /*This code is contributed by PrinciRaj1992*/   
Python3
   # Python3 code for minimum steps for   # a knight to reach target position   # initializing the matrix.   dp   =   [[  0   for   i   in   range  (  8  )]   for   j   in   range  (  8  )];   def   getsteps  (  x     y     tx     ty  ):   # if knight is on the target   # position return 0.   if   (  x   ==   tx   and   y   ==   ty  ):   return   dp  [  0  ][  0  ];   # if already calculated then return   # that value. Taking absolute difference.   elif  (  dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   !=   0  ):   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   else  :   # there will be two distinct positions   # from the knight towards a target.   # if the target is in same row or column   # as of knight then there can be four   # positions towards the target but in that   # two would be the same and the other two   # would be the same.   x1     y1     x2     y2   =   0     0     0     0  ;   # (x1 y1) and (x2 y2) are two positions.   # these can be different according to situation.   # From position of knight the chess board can be   # divided into four blocks i.e.. N-E E-S S-W W-N .   if   (  x    <=   tx  ):   if   (  y    <=   ty  ):   x1   =   x   +   2  ;   y1   =   y   +   1  ;   x2   =   x   +   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   +   2  ;   y1   =   y   -   1  ;   x2   =   x   +   1  ;   y2   =   y   -   2  ;   elif   (  y    <=   ty  ):   x1   =   x   -   2  ;   y1   =   y   +   1  ;   x2   =   x   -   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   -   2  ;   y1   =   y   -   1  ;   x2   =   x   -   1  ;   y2   =   y   -   2  ;   # ans will be 1 + minimum of steps   # required from (x1 y1) and (x2 y2).   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   =    min  (  getsteps  (  x1     y1     tx     ty  )   getsteps  (  x2     y2     tx     ty  ))   +   1  ;   # exchanging the coordinates x with y of both   # knight and target will result in same ans.   dp  [  abs  (  y   -   ty  )][  abs  (  x   -   tx  )]   =    dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   # Driver Code   if   __name__   ==   '__main__'  :   # size of chess board n*n   n   =   100  ;   # (x y) coordinate of the knight.   # (tx ty) coordinate of the target position.   x   =   4  ;   y   =   5  ;   tx   =   1  ;   ty   =   1  ;   # (Exception) these are the four corner points   # for which the minimum steps is 4.   if   ((  x   ==   1   and   y   ==   1   and   tx   ==   2   and   ty   ==   2  )   or   (  x   ==   2   and   y   ==   2   and   tx   ==   1   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   1   and   y   ==   n   and   tx   ==   2   and   ty   ==   n   -   1  )   or   (  x   ==   2   and   y   ==   n   -   1   and   tx   ==   1   and   ty   ==   n  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   1   and   tx   ==   n   -   1   and   ty   ==   2  )   or   (  x   ==   n   -   1   and   y   ==   2   and   tx   ==   n   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   n   and   tx   ==   n   -   1   and   ty   ==   n   -   1  )   or   (  x   ==   n   -   1   and   y   ==   n   -   1   and   tx   ==   n   and   ty   ==   n  )):   ans   =   4  ;   else  :   # dp[a][b] here a b is the difference of   # x & tx and y & ty respectively.   dp  [  1  ][  0  ]   =   3  ;   dp  [  0  ][  1  ]   =   3  ;   dp  [  1  ][  1  ]   =   2  ;   dp  [  2  ][  0  ]   =   2  ;   dp  [  0  ][  2  ]   =   2  ;   dp  [  2  ][  1  ]   =   1  ;   dp  [  1  ][  2  ]   =   1  ;   ans   =   getsteps  (  x     y     tx     ty  );   print  (  ans  );   # This code is contributed by PrinciRaj1992   
C#
   // C# code for minimum steps for    // a knight to reach target position    using     System  ;   public     class     GFG  {   // initializing the matrix.       static     int     [          ]  dp     =     new     int  [  8          8  ];         static     int     getsteps  (  int     x       int     y           int     tx       int     ty  )     {         // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {         return     dp  [  0          0  ];         }     else     // if already calculated then return       // that value. Taking Absolute difference.       if     (  dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]     !=     0  )     {         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }     else     {         // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;         // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {         if     (  y      <=     ty  )     {         x1     =     x     +     2  ;         y1     =     y     +     1  ;         x2     =     x     +     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     +     2  ;         y1     =     y     -     1  ;         x2     =     x     +     1  ;         y2     =     y     -     2  ;         }         }     else     if     (  y      <=     ty  )     {         x1     =     x     -     2  ;         y1     =     y     +     1  ;         x2     =     x     -     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     -     2  ;         y1     =     y     -     1  ;         x2     =     x     -     1  ;         y2     =     y     -     2  ;         }         // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]         =     Math  .  Min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;         // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .     Abs  (  y     -     ty  )          Math  .     Abs  (  x     -     tx  )]         =     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }         }      // Driver Code       static     public     void     Main  ()     {         int     i       n       x       y       tx       ty       ans  ;         // size of chess board n*n       n     =     100  ;         // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;         y     =     5  ;         tx     =     1  ;         ty     =     1  ;         // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )         ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )         ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )         ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )         ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     {         // dp[a  b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1          0  ]     =     3  ;         dp  [  0          1  ]     =     3  ;         dp  [  1          1  ]     =     2  ;         dp  [  2          0  ]     =     2  ;         dp  [  0          2  ]     =     2  ;         dp  [  2          1  ]     =     1  ;         dp  [  1          2  ]     =     1  ;         ans     =     getsteps  (  x       y       tx       ty  );         }         Console  .  WriteLine  (  ans  );         }      }      /*This code is contributed by PrinciRaj1992*/   
JavaScript
    <  script  >   // JavaScript code for minimum steps for   // a knight to reach target position   // initializing the matrix.   let     dp     =     new     Array  (  8  )   for  (  let     i  =  0  ;  i   <  8  ;  i  ++  ){      dp  [  i  ]     =     new     Array  (  8  ).  fill  (  0  )   }   function     getsteps  (  x    y    tx    ty  )   {      // if knight is on the target      // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     !=     0  )      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      let     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps      // required from (x1 y1) and (x2 y2).      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     =      Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [(  Math  .  abs  (  y     -     ty  ))][(  Math  .  abs  (  x     -     tx  ))]     =      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      }      }   }   // Driver Code   let     i       n       x       y       tx       ty       ans  ;   // size of chess board n*n   n     =     100  ;   // (x y) coordinate of the knight.   // (tx ty) coordinate of the target position.   x     =     4  ;   y     =     5  ;   tx     =     1  ;   ty     =     1  ;   // (Exception) these are the four corner points   // for which the minimum steps is 4.   if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||   (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||      (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||      (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;   else      {   // dp[a][b] here a b is the difference of   // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );   }   document  .  write  (  ans    ' 
'
); // This code is contributed by shinjanpatra. < /script>

výstup:  
3 

 

Časová zložitosť: O(N * M), kde N je celkový počet riadkov a M je celkový počet stĺpcov
Pomocný priestor: O(N * M) 

Vytvoriť kvíz