Minimálne náklady na vytvorenie rovnakých dvoch strún

Minimálne náklady na vytvorenie rovnakých dvoch strún
Vyskúšajte to na GfG Practice #practiceLinkDiv { display: none !important; }

Dané dva reťazce X a Y a dve hodnoty costX a costY. Musíme nájsť minimálne náklady potrebné na to, aby boli dané dva reťazce identické. Môžeme odstrániť znaky z oboch reťazcov. Cena vymazania znaku z reťazca X je cenaX a z Y je cenaY. Náklady na odstránenie všetkých znakov z reťazca sú rovnaké. 

Príklady:  

Input : X = 'abcd' Y = 'acdb' costX = 10 costY = 20. Output: 30 For Making both strings identical we have to delete character 'b' from both the string hence cost will be = 10 + 20 = 30. Input : X = 'ef' Y = 'gh' costX = 10 costY = 20. Output: 60 For making both strings identical we have to delete 2-2 characters from both the strings hence cost will be = 10 + 10 + 20 + 20 = 60. 
Recommended Practice Minimálne náklady na vytvorenie rovnakých dvoch strún Skúste to!

Tento problém je variáciou najdlhšej spoločnej sekvencie (LCS) . Myšlienka je jednoduchá, najprv nájdeme dĺžku najdlhšej spoločnej podsekvencie reťazcov X a Y. Teraz odpočítaním len_LCS od dĺžky jednotlivých reťazcov dostaneme počet znakov, ktoré treba odstrániť, aby boli identické.  



// Cost of making two strings identical is SUM of following two // 1) Cost of removing extra characters (other than LCS) // from X[] // 2) Cost of removing extra characters (other than LCS) // from Y[] Minimum Cost to make strings identical = costX * (m - len_LCS) + costY * (n - len_LCS). m ==> Length of string X m ==> Length of string Y len_LCS ==> Length of LCS Of X and Y. costX ==> Cost of removing a character from X[] costY ==> Cost of removing a character from Y[] Note that cost of removing all characters from a string is same.  

Nižšie je uvedená implementácia vyššie uvedenej myšlienky. 

C++
   /* C++ code to find minimum cost to make two strings    identical */   #include       using     namespace     std  ;   /* Returns length of LCS for X[0..m-1] Y[0..n-1] */   int     lcs  (  char     *  X       char     *  Y       int     m       int     n  )   {      int     L  [  m  +  1  ][  n  +  1  ];      /* Following steps build L[m+1][n+1] in bottom    up fashion. Note that L[i][j] contains length    of LCS of X[0..i-1] and Y[0..j-1] */      for     (  int     i  =  0  ;     i   <=  m  ;     i  ++  )      {      for     (  int     j  =  0  ;     j   <=  n  ;     j  ++  )      {      if     (  i     ==     0     ||     j     ==     0  )      L  [  i  ][  j  ]     =     0  ;      else     if     (  X  [  i  -1  ]     ==     Y  [  j  -1  ])      L  [  i  ][  j  ]     =     L  [  i  -1  ][  j  -1  ]     +     1  ;      else      L  [  i  ][  j  ]     =     max  (  L  [  i  -1  ][  j  ]     L  [  i  ][  j  -1  ]);      }      }      /* L[m][n] contains length of LCS for X[0..n-1] and    Y[0..m-1] */      return     L  [  m  ][  n  ];   }   // Returns cost of making X[] and Y[] identical. costX is   // cost of removing a character from X[] and costY is cost   // of removing a character from Y[]/   int     findMinCost  (  char     X  []     char     Y  []     int     costX       int     costY  )   {      // Find LCS of X[] and Y[]      int     m     =     strlen  (  X  )     n     =     strlen  (  Y  );      int     len_LCS     =     lcs  (  X       Y       m       n  );      // Cost of making two strings identical is SUM of      // following two      // 1) Cost of removing extra characters      // from first string      // 2) Cost of removing extra characters from      // second string      return     costX     *     (  m     -     len_LCS  )     +      costY     *     (  n     -     len_LCS  );   }   /* Driver program to test above function */   int     main  ()   {      char     X  []     =     'ef'  ;      char     Y  []     =     'gh'  ;      cout      < <     'Minimum Cost to make two strings '       < <     ' identical is = '      < <     findMinCost  (  X       Y       10       20  );      return     0  ;   }   
Java
   // Java code to find minimum cost to   // make two strings identical    import     java.io.*  ;   class   GFG     {          // Returns length of LCS for X[0..m-1] Y[0..n-1]       static     int     lcs  (  String     X       String     Y       int     m       int     n  )      {      int     L  [][]=  new     int  [  m     +     1  ][  n     +     1  ]  ;          /* Following steps build L[m+1][n+1] in bottom    up fashion. Note that L[i][j] contains length    of LCS of X[0..i-1] and Y[0..j-1] */      for     (  int     i     =     0  ;     i      <=     m  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <=     n  ;     j  ++  )      {      if     (  i     ==     0     ||     j     ==     0  )      L  [  i  ][  j  ]     =     0  ;          else     if     (  X  .  charAt  (  i     -     1  )     ==     Y  .  charAt  (  j     -     1  ))      L  [  i  ][  j  ]     =     L  [  i     -     1  ][  j     -     1  ]     +     1  ;          else      L  [  i  ][  j  ]     =     Math  .  max  (  L  [  i     -     1  ][  j  ]       L  [  i  ][  j     -     1  ]  );      }      }          // L[m][n] contains length of LCS       // for X[0..n-1] and Y[0..m-1]       return     L  [  m  ][  n  ]  ;      }          // Returns cost of making X[] and Y[] identical.       // costX is cost of removing a character from X[]       // and costY is cost of removing a character from Y[]/      static     int     findMinCost  (  String     X       String     Y       int     costX       int     costY  )      {      // Find LCS of X[] and Y[]      int     m     =     X  .  length  ();      int     n     =     Y  .  length  ();      int     len_LCS  ;      len_LCS     =     lcs  (  X       Y       m       n  );          // Cost of making two strings identical      // is SUM of following two      // 1) Cost of removing extra characters      // from first string      // 2) Cost of removing extra characters      // from second string      return     costX     *     (  m     -     len_LCS  )     +      costY     *     (  n     -     len_LCS  );      }          // Driver code      public     static     void     main     (  String  []     args  )         {      String     X     =     'ef'  ;      String     Y     =     'gh'  ;      System  .  out  .  println  (     'Minimum Cost to make two strings '      +     ' identical is = '         +     findMinCost  (  X       Y       10       20  ));          }   }   // This code is contributed by vt_m   
Python3
   # Python code to find minimum cost    # to make two strings identical   # Returns length of LCS for   # X[0..m-1] Y[0..n-1]    def   lcs  (  X     Y     m     n  ):   L   =   [[  0   for   i   in   range  (  n   +   1  )]   for   i   in   range  (  m   +   1  )]   # Following steps build    # L[m+1][n+1] in bottom    # up fashion. Note that    # L[i][j] contains length    # of LCS of X[0..i-1] and Y[0..j-1]   for   i   in   range  (  m   +   1  ):   for   j   in   range  (  n   +   1  ):   if   i   ==   0   or   j   ==   0  :   L  [  i  ][  j  ]   =   0   else   if   X  [  i   -   1  ]   ==   Y  [  j   -   1  ]:   L  [  i  ][  j  ]   =   L  [  i   -   1  ][  j   -   1  ]   +   1   else  :   L  [  i  ][  j  ]   =   max  (  L  [  i   -   1  ][  j  ]   L  [  i  ][  j   -   1  ])   # L[m][n] contains length of    # LCS for X[0..n-1] and Y[0..m-1]   return   L  [  m  ][  n  ]   # Returns cost of making X[]    # and Y[] identical. costX is    # cost of removing a character   # from X[] and costY is cost    # of removing a character from Y[]   def   findMinCost  (  X     Y     costX     costY  ):   # Find LCS of X[] and Y[]   m   =   len  (  X  )   n   =   len  (  Y  )   len_LCS   =  lcs  (  X     Y     m     n  )   # Cost of making two strings    # identical is SUM of following two    # 1) Cost of removing extra    # characters from first string    # 2) Cost of removing extra    # characters from second string   return   (  costX   *   (  m   -   len_LCS  )   +   costY   *   (  n   -   len_LCS  ))   # Driver Code   X   =   'ef'   Y   =   'gh'   print  (  'Minimum Cost to make two strings '     end   =   ''  )   print  (  'identical is = '     findMinCost  (  X     Y     10     20  ))   # This code is contributed   # by sahilshelangia   
C#
   // C# code to find minimum cost to   // make two strings identical    using     System  ;      class     GFG     {          // Returns length of LCS for X[0..m-1] Y[0..n-1]       static     int     lcs  (  String     X       String     Y       int     m       int     n  )      {      int     []  L     =     new     int  [  m     +     1       n     +     1  ];          /* Following steps build L[m+1][n+1] in bottom    up fashion. Note that L[i][j] contains length    of LCS of X[0..i-1] and Y[0..j-1] */      for     (  int     i     =     0  ;     i      <=     m  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <=     n  ;     j  ++  )      {      if     (  i     ==     0     ||     j     ==     0  )      L  [  i    j  ]     =     0  ;          else     if     (  X  [  i     -     1  ]     ==     Y  [  j     -     1  ])      L  [  i    j  ]     =     L  [  i     -     1    j     -     1  ]     +     1  ;          else      L  [  i    j  ]     =     Math  .  Max  (  L  [  i     -     1    j  ]     L  [  i    j     -     1  ]);      }      }          // L[m][n] contains length of LCS       // for X[0..n-1] and Y[0..m-1]       return     L  [  m    n  ];      }          // Returns cost of making X[] and Y[] identical.      // costX is cost of removing a character from X[]       // and costY is cost of removing a character from Y[]      static     int     findMinCost  (  String     X       String     Y           int     costX       int     costY  )      {      // Find LCS of X[] and Y[]      int     m     =     X  .  Length  ;      int     n     =     Y  .  Length  ;      int     len_LCS  ;      len_LCS     =     lcs  (  X       Y       m       n  );          // Cost of making two strings identical      // is SUM of following two      // 1) Cost of removing extra characters      // from first string      // 2) Cost of removing extra characters      // from second string      return     costX     *     (  m     -     len_LCS  )     +      costY     *     (  n     -     len_LCS  );      }          // Driver code      public     static     void     Main     ()         {      String     X     =     'ef'  ;      String     Y     =     'gh'  ;      Console  .  Write  (     'Minimum Cost to make two strings '     +      ' identical is = '     +      findMinCost  (  X       Y       10       20  ));      }   }   // This code is contributed by nitin mittal.   
PHP
      /* PHP code to find minimum cost to make two strings    identical */   /* Returns length of LCS for X[0..m-1] Y[0..n-1] */   function   lcs  (  $X     $Y     $m     $n  )   {   $L   =   array_fill  (  0  (  $m  +  1  )  array_fill  (  0  (  $n  +  1  )  NULL  ));   /* Following steps build L[m+1][n+1] in bottom    up fashion. Note that L[i][j] contains length    of LCS of X[0..i-1] and Y[0..j-1] */   for   (  $i  =  0  ;   $i   <=  $m  ;   $i  ++  )   {   for   (  $j  =  0  ;   $j   <=  $n  ;   $j  ++  )   {   if   (  $i   ==   0   ||   $j   ==   0  )   $L  [  $i  ][  $j  ]   =   0  ;   else   if   (  $X  [  $i  -  1  ]   ==   $Y  [  $j  -  1  ])   $L  [  $i  ][  $j  ]   =   $L  [  $i  -  1  ][  $j  -  1  ]   +   1  ;   else   $L  [  $i  ][  $j  ]   =   max  (  $L  [  $i  -  1  ][  $j  ]   $L  [  $i  ][  $j  -  1  ]);   }   }   /* L[m][n] contains length of LCS for X[0..n-1] and    Y[0..m-1] */   return   $L  [  $m  ][  $n  ];   }   // Returns cost of making X[] and Y[] identical. costX is   // cost of removing a character from X[] and costY is cost   // of removing a character from Y[]/   function   findMinCost  (  &  $X     &  $Y    $costX     $costY  )   {   // Find LCS of X[] and Y[]   $m   =   strlen  (  $X  );   $n   =   strlen  (  $Y  );   $len_LCS   =   lcs  (  $X     $Y     $m     $n  );   // Cost of making two strings identical is SUM of   // following two   // 1) Cost of removing extra characters   // from first string   // 2) Cost of removing extra characters from   // second string   return   $costX   *   (  $m   -   $len_LCS  )   +   $costY   *   (  $n   -   $len_LCS  );   }   /* Driver program to test above function */   $X   =   'ef'  ;   $Y   =   'gh'  ;   echo   'Minimum Cost to make two strings '  .   ' identical is = '   .   findMinCost  (  $X     $Y     10     20  );   return   0  ;   ?>   
JavaScript
    <  script  >   // Javascript code to find minimum cost to   // make two strings identical           // Returns length of LCS for X[0..m-1] Y[0..n-1]       function     lcs  (  X       Y       m       n  )      {      let     L     =     new     Array  (  m  +  1  );          for  (  let     i     =     0  ;     i      <     m     +     1  ;     i  ++  )      {      L  [  i  ]     =     new     Array  (  n     +     1  );      }          for  (  let     i     =     0  ;     i      <     m     +     1  ;     i  ++  )      {      for  (  let     j     =     0  ;     j      <     n     +     1  ;     j  ++  )      {      L  [  i  ][  j  ]     =     0  ;      }      }          /* Following steps build L[m+1][n+1] in bottom    up fashion. Note that L[i][j] contains length    of LCS of X[0..i-1] and Y[0..j-1] */      for     (  let     i     =     0  ;     i      <=     m  ;     i  ++  )      {      for     (  let     j     =     0  ;     j      <=     n  ;     j  ++  )      {      if     (  i     ==     0     ||     j     ==     0  )      L  [  i  ][  j  ]     =     0  ;          else     if     (  X  [  i  -  1  ]     ==     Y  [  j  -  1  ])      L  [  i  ][  j  ]     =     L  [  i     -     1  ][  j     -     1  ]     +     1  ;          else      L  [  i  ][  j  ]     =     Math  .  max  (  L  [  i     -     1  ][  j  ]     L  [  i  ][  j     -     1  ]);      }      }          // L[m][n] contains length of LCS       // for X[0..n-1] and Y[0..m-1]       return     L  [  m  ][  n  ];      }          // Returns cost of making X[] and Y[] identical.       // costX is cost of removing a character from X[]       // and costY is cost of removing a character from Y[]/          function     findMinCost  (  X    Y    costX    costY  )      {      // Find LCS of X[] and Y[]      let     m     =     X  .  length  ;      let     n     =     Y  .  length  ;      let     len_LCS  ;      len_LCS     =     lcs  (  X       Y       m       n  );          // Cost of making two strings identical      // is SUM of following two      // 1) Cost of removing extra characters      // from first string      // 2) Cost of removing extra characters      // from second string      return     costX     *     (  m     -     len_LCS  )     +      costY     *     (  n     -     len_LCS  );          }          // Driver code      let     X     =     'ef'  ;      let     Y     =     'gh'  ;      document  .  write  (     'Minimum Cost to make two strings '      +     ' identical is = '         +     findMinCost  (  X       Y       10       20  ));          // This code is contributed by avanitrachhadiya2155    <  /script>   

Výstup
Minimum Cost to make two strings identical is = 60 

Časová zložitosť: O(m*n)
Pomocný priestor: O(m*n)
 

Tento článok je recenzovaný tímom geeksforgeeks.


Najlepšie Články

Kategórie

Zaujímavé Články