Passos mínimos para atingir a meta de um Cavaleiro | Conjunto 2
Dado um tabuleiro de xadrez quadrado de tamanho N x N, a posição do Cavaleiro e a posição de um alvo são dadas, a tarefa é descobrir os passos mínimos que um Cavaleiro executará para alcançar a posição alvo.
Exemplos:
Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3
Uma abordagem BFS para resolver o problema acima já foi discutida no anterior publicar. Neste post é discutida uma solução de Programação Dinâmica.
Explicação da abordagem:
Deixe um tabuleiro de xadrez de 8 x 8 células. Agora digamos que o cavaleiro esteja em (3 3) e o alvo esteja em (7 8). Existem 8 movimentos possíveis a partir da posição atual do cavalo, ou seja, (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Mas entre estes apenas dois movimentos (5 4) e (4 5) serão em direção ao alvo e todos os outros se afastarão do alvo. Portanto, para encontrar as etapas mínimas, vá para (4 5) ou (5 4). Agora calcule os passos mínimos dados em (4 5) e (5 4) para atingir a meta. Isso é calculado por programação dinâmica. Portanto, isso resulta nas etapas mínimas de (3 3) a (7 8).
Deixe um tabuleiro de xadrez de 8 x 8 células. Agora digamos que o cavaleiro esteja em (4 3) e o alvo esteja em (4 7). Existem 8 movimentos possíveis, mas em direção ao alvo existem apenas 4 movimentos, ou seja, (5 5) (3 5) (2 4) (6 4). Como (5 5) é equivalente a (3 5) e (2 4) é equivalente a (6 4). Então desses 4 pontos pode ser convertido em 2 pontos. Tomando (5 5) e (6 4) (aqui). Agora calcule os passos mínimos dados a partir desses dois pontos para atingir a meta. Isso é calculado por programação dinâmica. Portanto, isso resulta nas etapas mínimas de (4 3) a (4 7).
Exceção: Quando o cavalo estiver no canto e o alvo for tal que a diferença das coordenadas xey com a posição do cavalo seja (1 1) ou vice-versa. Então as etapas mínimas serão 4.
Equação de programação dinâmica:
1) dp[diffOfX][diffOfY] são os passos mínimos dados da posição do cavaleiro até a posição do alvo.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
onde diffOfX = diferença entre a coordenada x do cavaleiro e a coordenada x do alvo
diffOfY = diferença entre a coordenada y do cavaleiro e a coordenada y do alvo
Abaixo está a implementação da abordagem acima:
// C++ code for minimum steps for // a knight to reach target position #include using namespace std ; // initializing the matrix. int dp [ 8 ][ 8 ] = { 0 }; int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) return dp [ 0 ][ 0 ]; else { // if already calculated then return // that value. Taking absolute difference. if ( dp [ abs ( x - tx )][ abs ( y - ty )] != 0 ) return dp [ abs ( x - tx )][ abs ( y - ty )]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else { if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ abs ( x - tx )][ abs ( y - ty )] = min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ abs ( y - ty )][ abs ( x - tx )] = dp [ abs ( x - tx )][ abs ( y - ty )]; return dp [ abs ( x - tx )][ abs ( y - ty )]; } } } // Driver Code int main () { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) ans = 4 ; else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) ans = 4 ; else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) ans = 4 ; else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) ans = 4 ; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } cout < < ans < < endl ; return 0 ; }
Java //Java code for minimum steps for // a knight to reach target position public class GFG { // initializing the matrix. static int dp [][] = new int [ 8 ][ 8 ] ; static int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) { return dp [ 0 ][ 0 ] ; } else // if already calculated then return // that value. Taking absolute difference. if ( dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] != 0 ) { return dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] = Math . min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ Math . abs ( y - ty ) ][ Math . abs ( x - tx ) ] = dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; return dp [ Math . abs ( x - tx ) ][ Math . abs ( y - ty ) ] ; } } // Driver Code static public void main ( String [] args ) { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) { ans = 4 ; } else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) { ans = 4 ; } else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) { ans = 4 ; } else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) { ans = 4 ; } else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } System . out . println ( ans ); } } /*This code is contributed by PrinciRaj1992*/
Python3 # Python3 code for minimum steps for # a knight to reach target position # initializing the matrix. dp = [[ 0 for i in range ( 8 )] for j in range ( 8 )]; def getsteps ( x y tx ty ): # if knight is on the target # position return 0. if ( x == tx and y == ty ): return dp [ 0 ][ 0 ]; # if already calculated then return # that value. Taking absolute difference. elif ( dp [ abs ( x - tx )][ abs ( y - ty )] != 0 ): return dp [ abs ( x - tx )][ abs ( y - ty )]; else : # there will be two distinct positions # from the knight towards a target. # if the target is in same row or column # as of knight then there can be four # positions towards the target but in that # two would be the same and the other two # would be the same. x1 y1 x2 y2 = 0 0 0 0 ; # (x1 y1) and (x2 y2) are two positions. # these can be different according to situation. # From position of knight the chess board can be # divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ): if ( y <= ty ): x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; else : x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; elif ( y <= ty ): x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; else : x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; # ans will be 1 + minimum of steps # required from (x1 y1) and (x2 y2). dp [ abs ( x - tx )][ abs ( y - ty )] = min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; # exchanging the coordinates x with y of both # knight and target will result in same ans. dp [ abs ( y - ty )][ abs ( x - tx )] = dp [ abs ( x - tx )][ abs ( y - ty )]; return dp [ abs ( x - tx )][ abs ( y - ty )]; # Driver Code if __name__ == '__main__' : # size of chess board n*n n = 100 ; # (x y) coordinate of the knight. # (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; # (Exception) these are the four corner points # for which the minimum steps is 4. if (( x == 1 and y == 1 and tx == 2 and ty == 2 ) or ( x == 2 and y == 2 and tx == 1 and ty == 1 )): ans = 4 ; elif (( x == 1 and y == n and tx == 2 and ty == n - 1 ) or ( x == 2 and y == n - 1 and tx == 1 and ty == n )): ans = 4 ; elif (( x == n and y == 1 and tx == n - 1 and ty == 2 ) or ( x == n - 1 and y == 2 and tx == n and ty == 1 )): ans = 4 ; elif (( x == n and y == n and tx == n - 1 and ty == n - 1 ) or ( x == n - 1 and y == n - 1 and tx == n and ty == n )): ans = 4 ; else : # dp[a][b] here a b is the difference of # x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); print ( ans ); # This code is contributed by PrinciRaj1992
C# // C# code for minimum steps for // a knight to reach target position using System ; public class GFG { // initializing the matrix. static int [ ] dp = new int [ 8 8 ]; static int getsteps ( int x int y int tx int ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) { return dp [ 0 0 ]; } else // if already calculated then return // that value. Taking Absolute difference. if ( dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )] != 0 ) { return dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )] = Math . Min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [ Math . Abs ( y - ty ) Math . Abs ( x - tx )] = dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; return dp [ Math . Abs ( x - tx ) Math . Abs ( y - ty )]; } } // Driver Code static public void Main () { int i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) { ans = 4 ; } else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) { ans = 4 ; } else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) { ans = 4 ; } else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) { ans = 4 ; } else { // dp[a b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 0 ] = 3 ; dp [ 0 1 ] = 3 ; dp [ 1 1 ] = 2 ; dp [ 2 0 ] = 2 ; dp [ 0 2 ] = 2 ; dp [ 2 1 ] = 1 ; dp [ 1 2 ] = 1 ; ans = getsteps ( x y tx ty ); } Console . WriteLine ( ans ); } } /*This code is contributed by PrinciRaj1992*/
JavaScript < script > // JavaScript code for minimum steps for // a knight to reach target position // initializing the matrix. let dp = new Array ( 8 ) for ( let i = 0 ; i < 8 ; i ++ ){ dp [ i ] = new Array ( 8 ). fill ( 0 ) } function getsteps ( x y tx ty ) { // if knight is on the target // position return 0. if ( x == tx && y == ty ) return dp [ 0 ][ 0 ]; else { // if already calculated then return // that value. Taking absolute difference. if ( dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))] != 0 ) return dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. let x1 y1 x2 y2 ; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if ( x <= tx ) { if ( y <= ty ) { x1 = x + 2 ; y1 = y + 1 ; x2 = x + 1 ; y2 = y + 2 ; } else { x1 = x + 2 ; y1 = y - 1 ; x2 = x + 1 ; y2 = y - 2 ; } } else { if ( y <= ty ) { x1 = x - 2 ; y1 = y + 1 ; x2 = x - 1 ; y2 = y + 2 ; } else { x1 = x - 2 ; y1 = y - 1 ; x2 = x - 1 ; y2 = y - 2 ; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))] = Math . min ( getsteps ( x1 y1 tx ty ) getsteps ( x2 y2 tx ty )) + 1 ; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp [( Math . abs ( y - ty ))][( Math . abs ( x - tx ))] = dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; return dp [( Math . abs ( x - tx ))][( Math . abs ( y - ty ))]; } } } // Driver Code let i n x y tx ty ans ; // size of chess board n*n n = 100 ; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4 ; y = 5 ; tx = 1 ; ty = 1 ; // (Exception) these are the four corner points // for which the minimum steps is 4. if (( x == 1 && y == 1 && tx == 2 && ty == 2 ) || ( x == 2 && y == 2 && tx == 1 && ty == 1 )) ans = 4 ; else if (( x == 1 && y == n && tx == 2 && ty == n - 1 ) || ( x == 2 && y == n - 1 && tx == 1 && ty == n )) ans = 4 ; else if (( x == n && y == 1 && tx == n - 1 && ty == 2 ) || ( x == n - 1 && y == 2 && tx == n && ty == 1 )) ans = 4 ; else if (( x == n && y == n && tx == n - 1 && ty == n - 1 ) || ( x == n - 1 && y == n - 1 && tx == n && ty == n )) ans = 4 ; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp [ 1 ][ 0 ] = 3 ; dp [ 0 ][ 1 ] = 3 ; dp [ 1 ][ 1 ] = 2 ; dp [ 2 ][ 0 ] = 2 ; dp [ 0 ][ 2 ] = 2 ; dp [ 2 ][ 1 ] = 1 ; dp [ 1 ][ 2 ] = 1 ; ans = getsteps ( x y tx ty ); } document . write ( ans ' ' ); // This code is contributed by shinjanpatra. < /script>
Saída:
3
Complexidade de tempo: O(N * M) onde N é o número total de linhas e M é o número total de colunas
Espaço Auxiliar: SOBRE(N*M)
Você Pode Gostar
Principais Artigos
Categoria
Artigos Interessantes