Maior sinal de mais ou '+' formado por todos os uns em uma matriz quadrada binária
Dado um n × n matriz binária juntamente com consistindo em 0s e 1s . Sua tarefa é encontrar o tamanho do maior '+' forma que pode ser formada usando apenas 1s .
UM '+' forma consiste em uma célula central com quatro braços que se estendem em todas as quatro direções ( para cima, para baixo, esquerda e direita ) enquanto permanece dentro dos limites da matriz. O tamanho de um '+' é definido como o número total de células formando-o incluindo o centro e todos os braços.
A tarefa é devolver o tamanho máximo de qualquer válido '+' em juntamente com . Se não '+' pode ser formado retorno .
Exemplos:
Entrada: com = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Saída: 9
Explicação: Um ‘+’ com comprimento de braço de 2 (2 células em cada direção + 1 centro) pode ser formado no centro do tapete.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Tamanho total = (2 × 4) + 1 = 9Entrada: com = [ [0 1 1] [0 0 1] [1 1 1] ]
Saída: 1
Explicação: Um '+' com comprimento de braço de 0 (0 células em cada direção + 1 centro) pode ser formado com qualquer um dos 1's.Entrada: com = [ [0] ]
Saída:
Explicação: Não O sinal ‘+’ pode ser formado.
[Abordagem ingênua] - Considere cada ponto como centro - O (n ^ 4) Tempo e O (n ^ 4) Espaço
Percorra as células da matriz uma por uma. Considere cada ponto percorrido como centro de um positivo e encontre o tamanho do +. Para cada elemento, percorremos da esquerda para a direita, de baixo para cima. O pior caso nesta solução acontece quando temos todos 1s.
O ideia é manter quatro matrizes auxiliares esquerda[][] direita[][] superior[][] inferior[][] para armazenar 1’s consecutivos em todas as direções. Para cada célula (eu j) na matriz de entrada, armazenamos as informações abaixo nestes quatro matrizes -
- esquerda (eu j) armazena o número máximo de 1s consecutivos no esquerda da célula (i j) incluindo a célula (i j).
- certo (eu j) armazena o número máximo de 1s consecutivos no certo da célula (i j) incluindo a célula (i j).
- topo (eu j) armazena o número máximo de 1s consecutivos em principal da célula (i j) incluindo a célula (i j).
- inferior (eu j) armazena o número máximo de 1s consecutivos em fundo da célula (i j) incluindo a célula (i j).
Depois de calcular o valor para cada célula das matrizes acima, o maior'+' seria formado por uma célula da matriz de entrada que possui valor máximo considerando o mínimo de ( esquerda (i j) direita (i j) superior (i j) inferior (i j) )
Podemos usar Programação Dinâmica para calcular a quantidade total de 1s consecutivos em todas as direções:
se mat(i j) == 1
esquerda (i j) = esquerda (i j - 1) + 1senão esquerda (i j) = 0
se mat(i j) == 1
topo(i j) = topo(i - 1 j) + 1;senão topo (i j) = 0;
se mat(i j) == 1
fundo(i j) = fundo(i + 1 j) + 1;senão inferior(i j) = 0;
se mat(i j) == 1
direita (i j) = direita (i j + 1) + 1;senão certo (i j) = 0;
Abaixo está a implementação da abordagem acima:
C++ // C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include using namespace std ; int findLargestPlus ( vector < vector < int >> & mat ) { int n = mat . size (); vector < vector < int >> left ( n vector < int > ( n 0 )); vector < vector < int >> right ( n vector < int > ( n 0 )); vector < vector < int >> top ( n vector < int > ( n 0 )); vector < vector < int >> bottom ( n vector < int > ( n 0 )); // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { left [ i ][ j ] = ( j == 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i == 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] == 1 ) { right [ i ][ j ] = ( j == n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { int armLength = min ({ left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]}); maxPlusSize = max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } int main () { // Hardcoded input matrix vector < vector < int >> mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; cout < < findLargestPlus ( mat ) < < endl ; return 0 ; }
Java // Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG { static int findLargestPlus ( int [][] mat ) { int n = mat . length ; int [][] left = new int [ n ][ n ] ; int [][] right = new int [ n ][ n ] ; int [][] top = new int [ n ][ n ] ; int [][] bottom = new int [ n ][ n ] ; // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { left [ i ][ j ] = ( j == 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i == 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] == 1 ) { right [ i ][ j ] = ( j == n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { int armLength = Math . min ( Math . min ( left [ i ][ j ] right [ i ][ j ] ) Math . min ( top [ i ][ j ] bottom [ i ][ j ] )); maxPlusSize = Math . max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } public static void main ( String [] args ) { // Hardcoded input matrix int [][] mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; System . out . println ( findLargestPlus ( mat )); } }
Python # Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus ( mat ): n = len ( mat ) left = [[ 0 ] * n for i in range ( n )] right = [[ 0 ] * n for i in range ( n )] top = [[ 0 ] * n for i in range ( n )] bottom = [[ 0 ] * n for i in range ( n )] # Fill left and top matrices for i in range ( n ): for j in range ( n ): if mat [ i ][ j ] == 1 : left [ i ][ j ] = 1 if j == 0 else left [ i ][ j - 1 ] + 1 top [ i ][ j ] = 1 if i == 0 else top [ i - 1 ][ j ] + 1 # Fill right and bottom matrices for i in range ( n - 1 - 1 - 1 ): for j in range ( n - 1 - 1 - 1 ): if mat [ i ][ j ] == 1 : right [ i ][ j ] = 1 if j == n - 1 else right [ i ][ j + 1 ] + 1 bottom [ i ][ j ] = 1 if i == n - 1 else bottom [ i + 1 ][ j ] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range ( n ): for j in range ( n ): if mat [ i ][ j ] == 1 : armLength = min ( left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]) maxPlusSize = max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ) return maxPlusSize if __name__ == '__main__' : # Hardcoded input matrix mat = [ [ 0 1 1 0 1 ] [ 0 0 1 1 1 ] [ 1 1 1 1 1 ] [ 1 1 1 0 1 ] [ 0 1 1 1 0 ] ] print ( findLargestPlus ( mat ))
C# // C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System ; class GfG { static int FindLargestPlus ( int [] mat ) { int n = mat . GetLength ( 0 ); int [] left = new int [ n n ]; int [] right = new int [ n n ]; int [] top = new int [ n n ]; int [] bottom = new int [ n n ]; // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i j ] == 1 ) { left [ i j ] = ( j == 0 ) ? 1 : left [ i j - 1 ] + 1 ; top [ i j ] = ( i == 0 ) ? 1 : top [ i - 1 j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i j ] == 1 ) { right [ i j ] = ( j == n - 1 ) ? 1 : right [ i j + 1 ] + 1 ; bottom [ i j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i j ] == 1 ) { int armLength = Math . Min ( Math . Min ( left [ i j ] right [ i j ]) Math . Min ( top [ i j ] bottom [ i j ])); maxPlusSize = Math . Max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } public static void Main () { // Hardcoded input matrix int [] mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; Console . WriteLine ( FindLargestPlus ( mat )); } }
JavaScript // JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus ( mat ) { let n = mat . length ; let left = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let right = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let top = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let bottom = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); // Fill left and top matrices for ( let i = 0 ; i < n ; i ++ ) { for ( let j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] === 1 ) { left [ i ][ j ] = ( j === 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i === 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( let i = n - 1 ; i >= 0 ; i -- ) { for ( let j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] === 1 ) { right [ i ][ j ] = ( j === n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i === n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } let maxPlusSize = 0 ; // Compute the maximum '+' size for ( let i = 0 ; i < n ; i ++ ) { for ( let j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] === 1 ) { let armLength = Math . min ( left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]); maxPlusSize = Math . max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } // Hardcoded input matrix let mat = [ [ 0 1 1 0 1 ] [ 0 0 1 1 1 ] [ 1 1 1 1 1 ] [ 1 1 1 0 1 ] [ 0 1 1 1 0 ] ]; console . log ( findLargestPlus ( mat ));
Saída
9
Complexidade de tempo: O(n²) devido a quatro passagens para calcular as matrizes direcionais e uma passagem final para determinar o maior '+'. Cada passagem leva tempo O(n²), levando a uma complexidade geral de O(n²).
Complexidade Espacial: O(n²) devido a quatro matrizes auxiliares (esquerda direita superior inferior) consumindo O (n²) espaço extra.