Reisende selgerproblem ved hjelp av filial og bundet

Reisende selgerproblem ved hjelp av filial og bundet

Gitt et sett med byer og avstand mellom hvert par byer, er problemet å finne den kortest mulige turen som besøker hver by nøyaktig en gang og vender tilbake til utgangspunktet.
 

Euler1


Tenk for eksempel på grafen som er vist på figuren på høyre side. En TSP-tur i grafen er 0-1-3-2-0. Kostnaden for turen er 10+25+30+15 som er 80.
Vi har diskutert følgende løsninger 
1) Naiv og dynamisk programmering  
2) Omtrentlig løsning ved bruk av MST
  
 
Gren og bundet løsning  
Som det fremgår av de tidligere artiklene i gren og bundet metode for gjeldende node i treet, beregner vi en bundet på best mulig løsning som vi kan få hvis vi ned denne noden. Hvis den bundne best mulig løsning i seg selv er verre enn nåværende best (best beregnet så langt), ignorerer vi undertræren forankret med noden. 
Merk at kostnadene gjennom en node inkluderer to kostnader. 
1) Kostnad for å nå noden fra roten (når vi når en node, har vi denne kostnaden beregnet) 
2) Kostnad for å nå et svar fra gjeldende node til et blad (vi beregner en bundet av denne kostnaden for å bestemme om vi skal ignorere undertrekk med denne noden eller ikke).
 

  • I tilfeller av en Maksimeringsproblem En øvre grense forteller oss den maksimale mulige løsningen hvis vi følger den gitte noden. For eksempel i 0/1 ryggsekk Vi brukte grådig tilnærming for å finne en øvre grense .
  • I tilfeller av en minimeringsproblem En undergrense forteller oss minst mulig løsning hvis vi følger den gitte noden. For eksempel i Jobboppgaveproblem Vi får en lavere grense ved å tildele minst kostnadsjobb til en arbeider.


I gren og bundet er den utfordrende delen å finne ut en måte å beregne en bundet på best mulig løsning. Nedenfor er en idé som brukes til å beregne grenser for reisende selgerproblem.
Kostnad for en hvilken som helst tur kan skrives som nedenfor.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V 


Tenk for eksempel ovennevnte graf. Nedenfor er minimumskostnad to kanter ved siden av hver node. 
 

Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example. 


Nå har vi en ide om beregning av undergrensen. La oss se hvordan vi kan bruke det State Space Search Tree. Vi begynner å oppregne alle mulige noder (helst i leksikografisk rekkefølge)
1. Rotnoden: Uten tap av generalitet antar vi at vi begynner på Vertex '0' som den nedre grensen er beregnet ovenfor.
Håndtere nivå 2: Det neste nivået oppregner alle mulige hjørner vi kan gå til (husk at i hvilken som helst bane må en toppunkt bare skje en gang) som er 1 2 3 ... n (merk at grafen er fullført). Tenk på at vi beregner for toppunkt 1 siden vi flyttet fra 0 til 1-turen vår nå har inkludert kanten 0-1. Dette gjør at vi kan gjøre nødvendige endringer i den nedre grensen av roten. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1) 


Hvordan fungerer det? For å inkludere kant 0-1 legger vi til kantkostnaden på 0-1 og trekker fra en kantvekt slik at den nedre grensen forblir så tett som mulig som vil være summen av minimumskantene på 0 og 1 delt på 2.. Klart kanten kan trukket ut kan ikke være mindre enn dette.
Håndtere andre nivåer: Når vi går videre til neste nivå, oppregner vi igjen alle mulige hjørner. For ovennevnte sak som går videre etter 1, sjekker vi ut 2 3 4 ... n. 
Tenk på undergrensen for 2 når vi flyttet fra 1 til 1, inkluderer vi kanten 1-2 til turen og endrer den nye nedre grensen for denne noden.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2) 


Merk: Den eneste endringen i formelen er at vi denne gangen har inkludert andre minimumskostnader for 1 fordi minimumskostnadene allerede er trukket fra på tidligere nivå. 
 

C++
   // C++ program to solve Traveling Salesman Problem   // using Branch and Bound.   #include          using     namespace     std  ;   const     int     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.   int     final_path  [  N  +  1  ];   // visited[] keeps track of the already visited nodes   // in a particular path   bool     visited  [  N  ];   // Stores the final minimum weight of shortest tour.   int     final_res     =     INT_MAX  ;   // Function to copy temporary solution to   // the final solution   void     copyToFinal  (  int     curr_path  [])   {      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   int     firstMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     min     =     INT_MAX  ;      for     (  int     k  =  0  ;     k   <  N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]   <  min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ];      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   int     secondMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     first     =     INT_MAX       second     =     INT_MAX  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ];      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]   void     TSPRec  (  int     adj  [  N  ][  N  ]     int     curr_bound       int     curr_weight        int     level       int     curr_path  [])   {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level  ==  N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level  -1  ]][  i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level  +  1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -1  ]][  i  ];      curr_bound     =     temp  ;      // Also reset the visited array      memset  (  visited       false       sizeof  (  visited  ));      for     (  int     j  =  0  ;     j   <=  level  -1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }   }   // This function sets up final_path[]    void     TSP  (  int     adj  [  N  ][  N  ])   {      int     curr_path  [  N  +  1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      memset  (  curr_path       -1       sizeof  (  curr_path  ));      memset  (  visited       0       sizeof  (  curr_path  ));      // Compute initial bound      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  &  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );   }   // Driver code   int     main  ()   {      //Adjacency matrix for the given graph      int     adj  [  N  ][  N  ]     =     {     {  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }      };      TSP  (  adj  );      printf  (  'Minimum cost : %d  n  '       final_res  );      printf  (  'Path Taken : '  );      for     (  int     i  =  0  ;     i   <=  N  ;     i  ++  )      printf  (  '%d '       final_path  [  i  ]);      return     0  ;   }   
Java
   // Java program to solve Traveling Salesman Problem   // using Branch and Bound.   import     java.util.*  ;   class   GFG   {          static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int     final_path  []     =     new     int  [  N     +     1  ]  ;      // visited[] keeps track of the already visited nodes      // in a particular path      static     boolean     visited  []     =     new     boolean  [  N  ]  ;      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Integer  .  MAX_VALUE  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int     curr_path  []  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ]  ;      final_path  [  N  ]     =     curr_path  [  0  ]  ;      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int     adj  [][]       int     i  )      {      int     min     =     Integer  .  MAX_VALUE  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ]  ;      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int     adj  [][]       int     i  )      {      int     first     =     Integer  .  MAX_VALUE       second     =     Integer  .  MAX_VALUE  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ]  ;      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ]  ;      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored which      // would later be copied to final_path[]      static     void     TSPRec  (  int     adj  [][]       int     curr_bound       int     curr_weight        int     level       int     curr_path  []  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -  1  ]][  curr_path  [  0  ]]  ;          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -  1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ]  ;      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level     +     1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -  1  ]][  i  ]  ;      curr_bound     =     temp  ;      // Also reset the visited array      Arrays  .  fill  (  visited    false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]       static     void     TSP  (  int     adj  [][]  )      {      int     curr_path  []     =     new     int  [  N     +     1  ]  ;      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Arrays  .  fill  (  curr_path       -  1  );      Arrays  .  fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  ==  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }          // Driver code      public     static     void     main  (  String  []     args  )         {      //Adjacency matrix for the given graph      int     adj  [][]     =     {{  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }     };      TSP  (  adj  );      System  .  out  .  printf  (  'Minimum cost : %dn'       final_res  );      System  .  out  .  printf  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )         {      System  .  out  .  printf  (  '%d '       final_path  [  i  ]  );      }      }   }   /* This code contributed by PrinciRaj1992 */   
Python3
   # Python3 program to solve    # Traveling Salesman Problem using    # Branch and Bound.   import   math   maxsize   =   float  (  'inf'  )   # Function to copy temporary solution   # to the final solution   def   copyToFinal  (  curr_path  ):   final_path  [:  N   +   1  ]   =   curr_path  [:]   final_path  [  N  ]   =   curr_path  [  0  ]   # Function to find the minimum edge cost    # having an end at the vertex i   def   firstMin  (  adj     i  ):   min   =   maxsize   for   k   in   range  (  N  ):   if   adj  [  i  ][  k  ]    <   min   and   i   !=   k  :   min   =   adj  [  i  ][  k  ]   return   min   # function to find the second minimum edge    # cost having an end at the vertex i   def   secondMin  (  adj     i  ):   first     second   =   maxsize     maxsize   for   j   in   range  (  N  ):   if   i   ==   j  :   continue   if   adj  [  i  ][  j  ]    <=   first  :   second   =   first   first   =   adj  [  i  ][  j  ]   elif  (  adj  [  i  ][  j  ]    <=   second   and   adj  [  i  ][  j  ]   !=   first  ):   second   =   adj  [  i  ][  j  ]   return   second   # function that takes as arguments:   # curr_bound -> lower bound of the root node   # curr_weight-> stores the weight of the path so far   # level-> current level while moving   # in the search space tree   # curr_path[] -> where the solution is being stored   # which would later be copied to final_path[]   def   TSPRec  (  adj     curr_bound     curr_weight     level     curr_path     visited  ):   global   final_res   # base case is when we have reached level N    # which means we have covered all the nodes once   if   level   ==   N  :   # check if there is an edge from   # last vertex in path back to the first vertex   if   adj  [  curr_path  [  level   -   1  ]][  curr_path  [  0  ]]   !=   0  :   # curr_res has the total weight   # of the solution we got   curr_res   =   curr_weight   +   adj  [  curr_path  [  level   -   1  ]]   [  curr_path  [  0  ]]   if   curr_res    <   final_res  :   copyToFinal  (  curr_path  )   final_res   =   curr_res   return   # for any other level iterate for all vertices   # to build the search space tree recursively   for   i   in   range  (  N  ):   # Consider next vertex if it is not same    # (diagonal entry in adjacency matrix and    # not visited already)   if   (  adj  [  curr_path  [  level  -  1  ]][  i  ]   !=   0   and   visited  [  i  ]   ==   False  ):   temp   =   curr_bound   curr_weight   +=   adj  [  curr_path  [  level   -   1  ]][  i  ]   # different computation of curr_bound    # for level 2 from the other levels   if   level   ==   1  :   curr_bound   -=   ((  firstMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   else  :   curr_bound   -=   ((  secondMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   # curr_bound + curr_weight is the actual lower bound    # for the node that we have arrived on.   # If current lower bound  < final_res    # we need to explore the node further   if   curr_bound   +   curr_weight    <   final_res  :   curr_path  [  level  ]   =   i   visited  [  i  ]   =   True   # call TSPRec for the next level   TSPRec  (  adj     curr_bound     curr_weight     level   +   1     curr_path     visited  )   # Else we have to prune the node by resetting    # all changes to curr_weight and curr_bound   curr_weight   -=   adj  [  curr_path  [  level   -   1  ]][  i  ]   curr_bound   =   temp   # Also reset the visited array   visited   =   [  False  ]   *   len  (  visited  )   for   j   in   range  (  level  ):   if   curr_path  [  j  ]   !=   -  1  :   visited  [  curr_path  [  j  ]]   =   True   # This function sets up final_path   def   TSP  (  adj  ):   # Calculate initial lower bound for the root node    # using the formula 1/2 * (sum of first min +    # second min) for all edges. Also initialize the    # curr_path and visited array   curr_bound   =   0   curr_path   =   [  -  1  ]   *   (  N   +   1  )   visited   =   [  False  ]   *   N   # Compute initial bound   for   i   in   range  (  N  ):   curr_bound   +=   (  firstMin  (  adj     i  )   +   secondMin  (  adj     i  ))   # Rounding off the lower bound to an integer   curr_bound   =   math  .  ceil  (  curr_bound   /   2  )   # We start at vertex 1 so the first vertex    # in curr_path[] is 0   visited  [  0  ]   =   True   curr_path  [  0  ]   =   0   # Call to TSPRec for curr_weight    # equal to 0 and level 1   TSPRec  (  adj     curr_bound     0     1     curr_path     visited  )   # Driver code   # Adjacency matrix for the given graph   adj   =   [[  0     10     15     20  ]   [  10     0     35     25  ]   [  15     35     0     30  ]   [  20     25     30     0  ]]   N   =   4   # final_path[] stores the final solution    # i.e. the // path of the salesman.   final_path   =   [  None  ]   *   (  N   +   1  )   # visited[] keeps track of the already   # visited nodes in a particular path   visited   =   [  False  ]   *   N   # Stores the final minimum weight   # of shortest tour.   final_res   =   maxsize   TSP  (  adj  )   print  (  'Minimum cost :'     final_res  )   print  (  'Path Taken : '     end   =   ' '  )   for   i   in   range  (  N   +   1  ):   print  (  final_path  [  i  ]   end   =   ' '  )   # This code is contributed by ng24_7   
C#
   // C# program to solve Traveling Salesman Problem   // using Branch and Bound.   using     System  ;   public     class     GFG     {      static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int  []     final_path     =     new     int  [  N     +     1  ];      // visited[] keeps track of the already visited nodes      // in a particular path      static     bool  []     visited     =     new     bool  [  N  ];      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Int32  .  MaxValue  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int  []     curr_path  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int  [     ]     adj       int     i  )      {      int     min     =     Int32  .  MaxValue  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i       k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i       k  ];      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int  [     ]     adj       int     i  )      {      int     first     =     Int32  .  MaxValue       second     =     Int32  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i       j  ]      <=     first  )     {      second     =     first  ;      first     =     adj  [  i       j  ];      }      else     if     (  adj  [  i       j  ]      <=     second      &&     adj  [  i       j  ]     !=     first  )      second     =     adj  [  i       j  ];      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored      // which      // would later be copied to final_path[]      static     void     TSPRec  (  int  [     ]     adj       int     curr_bound        int     curr_weight       int     level        int  []     curr_path  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )     {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]     curr_path  [  0  ]]      !=     0  )     {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight      +     adj  [  curr_path  [  level     -     1  ]      curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )     {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      // Consider next vertex if it is not same      // (diagonal entry in adjacency matrix and not      // visited already)      if     (  adj  [  curr_path  [  level     -     1  ]     i  ]     !=     0      &&     visited  [  i  ]     ==     false  )     {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]     i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  )      curr_bound      -=     ((  firstMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      else      curr_bound      -=     ((  secondMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      // curr_bound + curr_weight is the actual      // lower bound for the node that we have      // arrived on If current lower bound  <      // final_res we need to explore the node      // further      if     (  curr_bound     +     curr_weight      <     final_res  )     {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight        level     +     1       curr_path  );      }      // Else we have to prune the node by      // resetting all changes to curr_weight and      // curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]     i  ];      curr_bound     =     temp  ;      // Also reset the visited array      Array  .  Fill  (  visited       false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]      static     void     TSP  (  int  [     ]     adj  )      {      int  []     curr_path     =     new     int  [  N     +     1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Array  .  Fill  (  curr_path       -  1  );      Array  .  Fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound      +=     (  firstMin  (  adj       i  )     +     secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound     ==     1  )     ?     curr_bound     /     2     +     1      :     curr_bound     /     2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }      // Driver code      static     public     void     Main  ()      {      // Adjacency matrix for the given graph      int  [     ]     adj     =     {     {     0       10       15       20     }      {     10       0       35       25     }      {     15       35       0       30     }      {     20       25       30       0     }     };      TSP  (  adj  );      Console  .  WriteLine  (  'Minimum cost : '     +     final_res  );      Console  .  Write  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )     {      Console  .  Write  (  final_path  [  i  ]     +     ' '  );      }      }   }   // This code is contributed by Rohit Pradhan   
JavaScript
   const     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.      let     final_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // visited[] keeps track of the already visited nodes   // in a particular path      let     visited     =     Array     (  N  ).  fill     (  false  );   // Stores the final minimum weight of shortest tour.      let     final_res     =     Number  .  MAX_SAFE_INTEGER  ;   // Function to copy temporary solution to   // the final solution   function     copyToFinal     (  curr_path  ){      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      final_path  [  i  ]     =     curr_path  [  i  ];      }      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   function     firstMin     (  adj       i  ){   let     min     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     k     =     0  ;     k      <     N  ;     k  ++  ){      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !==     k  ){      min     =     adj  [  i  ][  k  ];      }      }      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   function     secondMin     (  adj       i  ){      let     first     =     Number  .  MAX_SAFE_INTEGER  ;      let     second     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     j     =     0  ;     j      <     N  ;     j  ++  ){      if     (  i     ==     j  ){      continue  ;      }      if     (  adj  [  i  ][  j  ]      <=     first  ){      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&     adj  [  i  ][  j  ]     !==     first  ){      second     =     adj  [  i  ][  j  ];      }      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]      function     TSPRec     (  adj       curr_bound       curr_weight       level       curr_path  )   {       // base case is when we have reached level N which   // means we have covered all the nodes once      if     (  level     ==     N  )      {         // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !==     0  )      {          // curr_res has the total weight of the      // solution we got      let     curr_res     =      curr_weight     +     adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]];          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal     (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;       }          // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){          // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level     -     1  ]][  i  ]     !==     0     &&     !  visited  [  i  ]){          let     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ];          // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  ){      curr_bound     -=     (  firstMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }      else      {      curr_bound     -=     (  secondMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }          // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  ){      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;         // call TSPRec for the next level      TSPRec     (  adj       curr_bound       curr_weight       level     +     1       curr_path  );       }          // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]][  i  ];      curr_bound     =     temp  ;          // Also reset the visited array      visited  .  fill     (  false  )         for     (  var     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;       }       }   }      // This function sets up final_path[]       function     TSP     (  adj  )   {       let     curr_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // Calculate initial lower bound for the root node   // using the formula 1/2 * (sum of first min +   // second min) for all edges.   // Also initialize the curr_path and visited array      let     curr_bound     =     0  ;       visited  .  fill     (  false  );          // compute initial bound      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      curr_bound     +=     firstMin     (  adj       i  )     +     secondMin     (  adj       i  );          }          // Rounding off the lower bound to an integer      curr_bound     =     curr_bound     ==     1     ?     (  curr_bound     /     2  )     +     1     :     (  curr_bound     /     2  );       // We start at vertex 1 so the first vertex   // in curr_path[] is 0      visited  [  0  ]     =     true  ;       curr_path  [  0  ]     =     0  ;       // Call to TSPRec for curr_weight equal to   // 0 and level 1      TSPRec     (  adj       curr_bound       0       1       curr_path  );   }   //Adjacency matrix for the given graph      let     adj     =  [[  0       10       15       20  ]         [  10       0       35       25  ]      [  15       35       0       30  ]      [  20       25       30       0  ]];       TSP     (  adj  );       console  .  log     (  `Minimum cost:  ${  final_res  }  `  );   console  .  log     (  `Path Taken:  ${  final_path  .  join     (  ' '  )  }  `  );      // This code is contributed by anskalyan3.   

Utgang:  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0  

Avrundingen gjøres i denne kodelinjen:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2);  

I grenen og bundet TSP -algoritmen beregner vi en nedre grense for den totale kostnaden for den optimale løsningen ved å legge opp minimumskantkostnadene for hvert toppunkt og deretter dele med to. Imidlertid er det ikke sikkert at denne undergrensen er et heltall. For å få et heltall undergrensen kan vi bruke avrunding.

I koden ovenfor holder Curr_bound -variabelen den nåværende nedre grensen på den totale kostnaden for den optimale løsningen. Når vi besøker et nytt toppunkt på nivånivå, beregner vi en ny lavere bundet New_Bound ved å ta summen av minimumskostnadene for det nye toppunktet og dens to nærmeste naboer. Vi oppdaterer deretter Curr_bound -variabelen ved å avrunde New_Bound til nærmeste heltall.

Hvis nivået er 1, runder vi ned til nærmeste heltall. Dette er fordi vi bare har besøkt ett toppunkt så langt, og vi ønsker å være konservative i vårt estimat av den totale kostnaden for den optimale løsningen. Hvis nivået er større enn 1, bruker vi en mer aggressiv avrundingsstrategi som tar hensyn til det faktum at vi allerede har besøkt noen hjørner og derfor kan gjøre et mer nøyaktig estimat av den totale kostnaden for den optimale løsningen.


Tidskompleksitet: Det verste tilfellet kompleksitet av gren og bundet forblir den samme som for brute force tydelig fordi vi i verste fall aldri får en sjanse til å beskjære en node. Mens den i praksis fungerer veldig bra avhengig av den forskjellige forekomsten av TSP. Kompleksiteten avhenger også av valget av avgrensningsfunksjonen som de er de som bestemmer hvor mange noder som skal beskjæres.
Referanser:  
http://lcm.csa.iisc.net.in/dsa/node187.html