Implementering av Affine Cipher

Implementering av Affine Cipher

Affine-chifferet er en type monoalfabetisk substitusjons-chiffer der hver bokstav i et alfabet er kartlagt til dens numeriske ekvivalent kryptert ved hjelp av en enkel matematisk funksjon og konvertert tilbake til en bokstav. Formelen som brukes betyr at hver bokstav krypterer til en annen bokstav og tilbake igjen, noe som betyr at chifferen i hovedsak er en standard erstatningssiffer med en regel som styrer hvilken bokstav som går til hvilken. 
Hele prosessen er avhengig av å jobbe modulo m (lengden på alfabetet som brukes). I den affine chifferen blir bokstavene i et alfabet med størrelse m først kartlagt til heltallene i området 0 … m-1. 

'Nøkkelen' for Affine-chifferet består av 2 tall vi kaller dem a og b. Den følgende diskusjonen forutsetter bruken av et alfabet på 26 tegn (m = 26). a bør velges til å være relativt prime til m (dvs. a skal ikke ha noen faktorer til felles med m). 

affine chifferverdier

Kryptering

Den bruker modulær aritmetikk for å transformere heltallet som hver klartekstbokstav tilsvarer til et annet heltall som tilsvarer en chiffertekstbokstav. Krypteringsfunksjonen for en enkelt bokstav er  

 E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime. 

Dekryptering

Ved dechiffrering av chifferteksten må vi utføre de motsatte (eller inverse) funksjonene på chifferteksten for å hente klarteksten. Nok en gang er det første trinnet å konvertere hver av chiffertekstbokstavene til deres heltallsverdier. Dekrypteringsfunksjonen er  

D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m . 

For å finne en multiplikativ invers  

Vi må finne et tall x slik at: 
Hvis vi finner tallet x slik at ligningen er sann, er x det inverse av a og vi kaller det a^-1. Den enkleste måten å løse denne ligningen på er å søke i hvert av tallene 1 til 25 og se hvilken som tilfredsstiller ligningen. 

[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);  

Hvis du nå multipliserer x og a og reduserer resultatet (mod 26) får du svaret 1. Husk at dette bare er definisjonen av en invers dvs. hvis a*x = 1 (mod 26) så er x en invers av a (og a er en invers av x)

Eksempel: 

affint chiffer

Implementering:

C++
   //CPP program to illustrate Affine Cipher   #include       using     namespace     std  ;   //Key values of a and b   const     int     a     =     17  ;   const     int     b     =     20  ;   string     encryptMessage  (  string     msg  )   {      ///Cipher Text initially empty      string     cipher     =     ''  ;         for     (  int     i     =     0  ;     i      <     msg  .  length  ();     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]  !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +         (  char  )     ((((  a     *     (  msg  [  i  ]  -  'A'  )     )     +     b  )     %     26  )     +     'A'  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   string     decryptCipher  (  string     cipher  )   {      string     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +         (  char  )     (((  a_inv     *     ((  cipher  [  i  ]  +  'A'     -     b  ))     %     26  ))     +     'A'  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   int     main  (  void  )   {      string     msg     =     'AFFINE CIPHER'  ;          //Calling encryption function      string     cipherText     =     encryptMessage  (  msg  );      cout      < <     'Encrypted Message is : '      < <     cipherText   < <  endl  ;          //Calling Decryption function      cout      < <     'Decrypted Message is: '      < <     decryptCipher  (  cipherText  );      return     0  ;   }   
Java
   // Java program to illustrate Affine Cipher   class   GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */         if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ]  ;      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */         if     (  cipher  .  charAt  (  i  )     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  .  charAt  (  i  )     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  .  charAt  (  i  );      }      }      return     msg  ;      }      // Driver code      public     static     void     main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  toCharArray  ());      System  .  out  .  println  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      System  .  out  .  println  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   // This code contributed by Rajput-Ji   
Python
   # Implementation of Affine Cipher in Python   # Extended Euclidean Algorithm for finding modular inverse   # eg: modinv(7 26) = 15   def   egcd  (  a     b  ):   x    y     u    v   =   0    1     1    0   while   a   !=   0  :   q     r   =   b  //  a     b  %  a   m     n   =   x  -  u  *  q     y  -  v  *  q   b    a     x    y     u    v   =   a    r     u    v     m    n   gcd   =   b   return   gcd     x     y   def   modinv  (  a     m  ):   gcd     x     y   =   egcd  (  a     m  )   if   gcd   !=   1  :   return   None   # modular inverse does not exist   else  :   return   x   %   m   # affine cipher encryption function    # returns the cipher text   def   affine_encrypt  (  text     key  ):      '''    C = (a*P + b) % 26    '''   return   ''  .  join  ([   chr  (((   key  [  0  ]  *  (  ord  (  t  )   -   ord  (  'A'  ))   +   key  [  1  ]   )   %   26  )   +   ord  (  'A'  ))   for   t   in   text  .  upper  ()  .  replace  (  ' '     ''  )   ])   # affine cipher decryption function    # returns original text   def   affine_decrypt  (  cipher     key  ):      '''    P = (a^-1 * (C - b)) % 26    '''   return   ''  .  join  ([   chr  (((   modinv  (  key  [  0  ]   26  )  *  (  ord  (  c  )   -   ord  (  'A'  )   -   key  [  1  ]))   %   26  )   +   ord  (  'A'  ))   for   c   in   cipher   ])   # Driver Code to test the above functions   def   main  ():   # declaring text and key   text   =   'AFFINE CIPHER'   key   =   [  17     20  ]   # calling encryption function   affine_encrypted_text   =   affine_encrypt  (  text     key  )   print  (  'Encrypted Text:   {}  '  .  format  (   affine_encrypted_text   ))   # calling decryption function   print  (  'Decrypted Text:   {}  '  .  format   (   affine_decrypt  (  affine_encrypted_text     key  )   ))   if   __name__   ==   '__main__'  :   main  ()   # This code is contributed by   # Bhushan Borole   
C#
   // C# program to illustrate Affine Cipher   using     System  ;       class     GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  Length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ];      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  Length  ;     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      if     (  cipher  [  i  ]     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  [  i  ]     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  [  i  ];      }      }      return     msg  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  ToCharArray  ());      Console  .  WriteLine  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      Console  .  WriteLine  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   /* This code contributed by PrinciRaj1992 */   
JavaScript
   //Javascript program to illustrate Affine Cipher   //Key values of a and b   let     a     =     17  ;   let     b     =     20  ;   function     encryptMessage  (  msg  )   {      ///Cipher Text initially empty      let     cipher     =     ''  ;         for     (  let     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]     !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +     String  .  fromCharCode  ((((  a     *     (  msg  [  i  ].  charCodeAt  (  0  )  -  65  )     )     +     b  )     %     26  )     +     65  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   function     decryptCipher  (  cipher  )   {      let     msg     =     ''  ;      let     a_inv     =     0  ;      let     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  let     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  let     i     =     0  ;     i      <     cipher  .  length  ;     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +     String  .  fromCharCode  (((  a_inv     *     ((  cipher  [  i  ].  charCodeAt  (  0  )  +  65     -     b  ))     %     26  ))     +     65  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   let     msg     =     'AFFINE CIPHER'  ;   //Calling encryption function   let     cipherText     =     encryptMessage  (  msg  );   console  .  log  (  'Encrypted Message is : '     +     cipherText  );   //Calling Decryption function   console  .  log  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));   // The code is contributed by Arushi Jindal.    

Produksjon
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER 

 

Lag quiz