Finn maksimal lengde slangesekvens

Finn maksimal lengde slangesekvens

Gitt et rutenett med tall, finn maksimal lengde slangesekvens og skriv det ut. Hvis flere slangesekvenser eksisterer med maksimal lengde, skriv ut noen av dem.

En slangesekvens består av tilstøtende tall i rutenettet slik at for hvert tall tallet til høyre eller tallet under det er +1 eller -1 dets verdi. For eksempel hvis du er på stedet (x y) i rutenettet, kan du enten bevege deg til høyre, dvs. (x y+1) hvis antallet er ± 1 eller bevege deg ned, dvs. (x+1 y) hvis dette tallet er ± 1.

For example   9   6 5 2    8 7 6 5    7 3 1   6    1 1 1   7   In above grid the longest snake sequence is: (9 8 7 6 5 6 7) 

Under figur viser alle mulige stier:

Snakessequence

Vi anbefaler deg på det sterkeste å minimere nettleseren din og prøve dette selv først.

Tanken er å bruke dynamisk programmering. For hver celle i matrisen holder vi maksimal lengde på en slange som ender i nåværende celle. Maksimal lengde slangesekvens vil ha maksimal verdi. Den maksimale verdicellen vil samsvare med slangens haler. For å trykke slangen må vi spore tilbake fra hale helt tilbake til Snakes hode.

Let   T[i][i]   represent maximum length of a snake which ends at cell (i j) then for given matrix M the DP relation is defined as T[0][0] = 0  T[i][j] = max(T[i][j] T[i][j - 1] + 1) if M[i][j] = M[i][j - 1] ± 1  T[i][j] = max(T[i][j] T[i - 1][j] + 1) if M[i][j] = M[i - 1][j] ± 1 

Nedenfor er implementeringen av ideen 

C++
   // C++ program to find maximum length   // Snake sequence and print it   #include          using     namespace     std  ;   #define M 4   #define N 4   struct     Point   {      int     x       y  ;   };   // Function to find maximum length Snake sequence path   // (i j) corresponds to tail of the snake   list   <  Point  >     findPath  (  int     grid  [  M  ][  N  ]     int     mat  [  M  ][  N  ]      int     i       int     j  )   {      list   <  Point  >     path  ;      Point     pt     =     {  i       j  };      path  .  push_front  (  pt  );      while     (  grid  [  i  ][  j  ]     !=     0  )      {      if     (  i     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i     -     1  ][  j  ])      {      pt     =     {  i     -     1       j  };      path  .  push_front  (  pt  );      i  --  ;      }      else     if     (  j     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i  ][  j     -     1  ])      {      pt     =     {  i       j     -     1  };      path  .  push_front  (  pt  );      j  --  ;      }      }      return     path  ;   }   // Function to find maximum length Snake sequence   void     findSnakeSequence  (  int     mat  [  M  ][  N  ])   {      // table to store results of subproblems      int     lookup  [  M  ][  N  ];      // initialize by 0      memset  (  lookup       0       sizeof     lookup  );      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )      {      // do except for (0 0) cell      if     (  i     ||     j  )      {      // look above      if     (  i     >     0     &&      abs  (  mat  [  i     -     1  ][  j  ]     -     mat  [  i  ][  j  ])     ==     1  )      {      lookup  [  i  ][  j  ]     =     max  (  lookup  [  i  ][  j  ]      lookup  [  i     -     1  ][  j  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ])      {      max_len     =     lookup  [  i  ][  j  ];      max_row     =     i       max_col     =     j  ;      }      }      // look left      if     (  j     >     0     &&      abs  (  mat  [  i  ][  j     -     1  ]     -     mat  [  i  ][  j  ])     ==     1  )      {      lookup  [  i  ][  j  ]     =     max  (  lookup  [  i  ][  j  ]      lookup  [  i  ][  j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ])      {      max_len     =     lookup  [  i  ][  j  ];      max_row     =     i       max_col     =     j  ;      }      }      }      }      }      cout      < <     'Maximum length of Snake sequence is: '       < <     max_len      < <     endl  ;      // find maximum length Snake sequence path      list   <  Point  >     path     =     findPath  (  lookup       mat       max_row        max_col  );      cout      < <     'Snake sequence is:'  ;      for     (  auto     it     =     path  .  begin  ();     it     !=     path  .  end  ();     it  ++  )      cout      < <     endl      < <     mat  [  it  ->  x  ][  it  ->  y  ]      < <     ' ('       < <     it  ->  x      < <     ' '      < <     it  ->  y      < <     ')'     ;   }   // Driver code   int     main  ()   {      int     mat  [  M  ][  N  ]     =      {      {  9       6       5       2  }      {  8       7       6       5  }      {  7       3       1       6  }      {  1       1       1       7  }      };      findSnakeSequence  (  mat  );      return     0  ;   }   
Java
   // Java program to find maximum length   // Snake sequence and print it   import     java.util.*  ;   class   GFG      {   static     int     M     =     4  ;   static     int     N     =     4  ;   static     class   Point   {      int     x       y  ;      public     Point  (  int     x       int     y  )         {      this  .  x     =     x  ;      this  .  y     =     y  ;      }   };   // Function to find maximum length Snake sequence path   // (i j) corresponds to tail of the snake   static     List   <  Point  >     findPath  (  int     grid  [][]           int     mat  [][]           int     i       int     j  )   {      List   <  Point  >     path     =     new     LinkedList   <>  ();      Point     pt     =     new     Point  (  i       j  );      path  .  add  (  0       pt  );      while     (  grid  [  i  ][  j  ]     !=     0  )      {      if     (  i     >     0     &&      grid  [  i  ][  j  ]     -     1     ==     grid  [  i     -     1  ][  j  ]  )      {      pt     =     new     Point  (  i     -     1       j  );      path  .  add  (  0       pt  );      i  --  ;      }      else     if     (  j     >     0     &&     grid  [  i  ][  j  ]     -     1     ==         grid  [  i  ][  j     -     1  ]  )      {      pt     =     new     Point  (  i       j     -     1  );      path  .  add  (  0       pt  );      j  --  ;      }      }      return     path  ;   }   // Function to find maximum length Snake sequence   static     void     findSnakeSequence  (  int     mat  [][]  )   {      // table to store results of subproblems      int     [][]  lookup     =     new     int  [  M  ][  N  ]  ;      // initialize by 0      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )      {      // do except for (0 0) cell      if     (  i     !=     0     ||     j     !=     0  )      {      // look above      if     (  i     >     0     &&      Math  .  abs  (  mat  [  i     -     1  ][  j  ]     -         mat  [  i  ][  j  ]  )     ==     1  )      {      lookup  [  i  ][  j  ]     =     Math  .  max  (  lookup  [  i  ][  j  ]        lookup  [  i     -     1  ][  j  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ]  )      {      max_len     =     lookup  [  i  ][  j  ]  ;      max_row     =     i  ;     max_col     =     j  ;      }      }      // look left      if     (  j     >     0     &&      Math  .  abs  (  mat  [  i  ][  j     -     1  ]     -         mat  [  i  ][  j  ]  )     ==     1  )      {      lookup  [  i  ][  j  ]     =     Math  .  max  (  lookup  [  i  ][  j  ]        lookup  [  i  ][  j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i  ][  j  ]  )      {      max_len     =     lookup  [  i  ][  j  ]  ;      max_row     =     i  ;     max_col     =     j  ;      }      }      }      }      }      System  .  out  .  print  (  'Maximum length of Snake '     +         'sequence is: '     +     max_len     +     'n'  );      // find maximum length Snake sequence path      List   <  Point  >     path     =     findPath  (  lookup       mat       max_row        max_col  );      System  .  out  .  print  (  'Snake sequence is:'  );      for     (  Point     it     :     path  )      System  .  out  .  print  (  'n'     +     mat  [  it  .  x  ][  it  .  y  ]     +     ' ('     +         it  .  x     +     ' '     +     it  .  y     +     ')'  );   }   // Driver code   public     static     void     main  (  String  []     args  )   {      int     mat  [][]     =     {{  9       6       5       2  }      {  8       7       6       5  }      {  7       3       1       6  }      {  1       1       1       7  }};      findSnakeSequence  (  mat  );   }   }   // This code is contributed by 29AjayKumar   
C#
   // C# program to find maximum length   // Snake sequence and print it   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      static     int     M     =     4  ;      static     int     N     =     4  ;      public     class     Point     {      public     int     x       y  ;      public     Point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // Function to find maximum length Snake sequence path      // (i j) corresponds to tail of the snake      static     List   <  Point  >     findPath  (  int  [     ]     grid       int  [     ]     mat        int     i       int     j  )      {      List   <  Point  >     path     =     new     List   <  Point  >  ();      Point     pt     =     new     Point  (  i       j  );      path  .  Insert  (  0       pt  );      while     (  grid  [  i       j  ]     !=     0  )     {      if     (  i     >     0     &&     grid  [  i       j  ]     -     1     ==     grid  [  i     -     1       j  ])     {      pt     =     new     Point  (  i     -     1       j  );      path  .  Insert  (  0       pt  );      i  --  ;      }      else     if     (  j     >     0      &&     grid  [  i       j  ]     -     1     ==     grid  [  i       j     -     1  ])     {      pt     =     new     Point  (  i       j     -     1  );      path  .  Insert  (  0       pt  );      j  --  ;      }      }      return     path  ;      }      // Function to find maximum length Snake sequence      static     void     findSnakeSequence  (  int  [     ]     mat  )      {      // table to store results of subproblems      int  [     ]     lookup     =     new     int  [  M       N  ];      // initialize by 0      // stores maximum length of Snake sequence      int     max_len     =     0  ;      // store coordinates to snake's tail      int     max_row     =     0  ;      int     max_col     =     0  ;      // fill the table in bottom-up fashion      for     (  int     i     =     0  ;     i      <     M  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      // do except for (0 0) cell      if     (  i     !=     0     ||     j     !=     0  )     {      // look above      if     (  i     >     0      &&     Math  .  Abs  (  mat  [  i     -     1       j  ]      -     mat  [  i       j  ])      ==     1  )     {      lookup  [  i       j  ]     =     Math  .  Max  (      lookup  [  i       j  ]      lookup  [  i     -     1       j  ]     +     1  );      if     (  max_len      <     lookup  [  i       j  ])     {      max_len     =     lookup  [  i       j  ];      max_row     =     i  ;      max_col     =     j  ;      }      }      // look left      if     (  j     >     0      &&     Math  .  Abs  (  mat  [  i       j     -     1  ]      -     mat  [  i       j  ])      ==     1  )     {      lookup  [  i       j  ]     =     Math  .  Max  (      lookup  [  i       j  ]      lookup  [  i       j     -     1  ]     +     1  );      if     (  max_len      <     lookup  [  i       j  ])     {      max_len     =     lookup  [  i       j  ];      max_row     =     i  ;      max_col     =     j  ;      }      }      }      }      }      Console  .  Write  (  'Maximum length of Snake '      +     'sequence is: '     +     max_len     +     'n'  );      // find maximum length Snake sequence path      List   <  Point  >     path      =     findPath  (  lookup       mat       max_row       max_col  );      Console  .  Write  (  'Snake sequence is:'  );      foreach  (  Point     it     in     path  )      Console  .  Write  (  'n'     +     mat  [  it  .  x       it  .  y  ]     +     ' ('      +     it  .  x     +     ' '     +     it  .  y     +     ')'  );      }      // Driver code      public     static     void     Main  (  String  []     args  )      {      int  [     ]     mat     =     {     {     9       6       5       2     }      {     8       7       6       5     }      {     7       3       1       6     }      {     1       1       1       7     }     };      findSnakeSequence  (  mat  );      }   }   // This code is contributed by Princi Singh   
Python3
   def   snakesequence  (  S     m     n  ):   sequence   =   {}   DP   =   [[  1   for   x   in   range  (  m  +  1  )]   for   x   in   range  (  n  +  1  )]   a     b     maximum   =   0     0     0   position   =   [  0     0  ]   for   i   in   range  (  0     n  +  1  ):   for   j   in   range  (  0     m  +  1  ):   a     b   =   0     0   p   =   'initial'   if  (  i   >   0   and   abs  (  S  [  i  ][  j  ]   -   S  [  i  -  1  ][  j  ])   ==   1  ):   a   =   DP  [  i  -  1  ][  j  ]   if  (  j   >   0   and   abs  (  S  [  i  ][  j  ]   -   S  [  i  ][  j  -  1  ])   ==   1  ):   b   =   DP  [  i  ][  j  -  1  ]   if   a   !=   0   and   a   >=   b  :   p   =   str  (  i  -  1  )   +   ' '   +   str  (  j  )   elif   b   !=   0  :   p   =   str  (  i  )   +   ' '   +   str  (  j  -  1  )   q   =   str  (  i  )   +   ' '   +   str  (  j  )   sequence  [  q  ]   =   p   DP  [  i  ][  j  ]   =   DP  [  i  ][  j  ]   +   max  (  a     b  )   if   DP  [  i  ][  j  ]   >=   maximum  :   maximum   =   DP  [  i  ][  j  ]   position  [  0  ]   =   i   position  [  1  ]   =   j   snakeValues   =   []   snakePositions   =   []   snakeValues  .  append  (  S  [  position  [  0  ]][  position  [  1  ]])   check   =   'found'   str_next   =   str  (  position  [  0  ])   +   ' '   +   str  (  position  [  1  ])   findingIndices   =   sequence  [  str_next  ]  .  split  ()   while  (  check   ==   'found'  ):   if   sequence  [  str_next  ]   ==   'initial'  :   snakePositions  .  insert  (  0     str_next  )   check   =   'end'   continue   findingIndices   =   sequence  [  str_next  ]  .  split  ()   g   =   int  (  findingIndices  [  0  ])   h   =   int  (  findingIndices  [  1  ])   snakeValues  .  insert  (  0     S  [  g  ][  h  ])   snake_position   =   str  (  g  )   +   ' '   +   str  (  h  )   snakePositions  .  insert  (  0     str_next  )   str_next   =   sequence  [  str_next  ]   return   [  snakeValues     snakePositions  ]   S   =   [[  9     6     5     2  ]   [  8     7     6     5  ]   [  7     3     1     6  ]   [  1     1     10     7  ]]   m   =   3   n   =   3   seq   =   snakesequence  (  S     m     n  )   for   i   in   range  (  len  (  seq  [  0  ])):   print  (  seq  [  0  ][  i  ]   ''     seq  [  1  ][  i  ]  .  split  ())   
JavaScript
   function     snakesequence  (  S       m       n  )   {      let     sequence     =     {}      let     DP     =     new     Array  (  n     +     1  )      for     (  var     i     =     0  ;     i      <=     n  ;     i  ++  )      DP  [  i  ]     =     new     Array  (  m     +     1  ).  fill  (  1  )      let     a     =     0       b     =     0       maximum     =     0      let     position     =     [  0       0  ]      for     (  var     i     =     0  ;     i      <=     n  ;     i  ++  )      {      for     (  var     j     =     0  ;     j      <=     m  ;     j  ++  )         {      a     =     0      b     =     0      let     p     =     'initial'      if  (  i     >     0     &&     Math  .  abs  (  S  [  i  ][  j  ]     -     S  [  i  -  1  ][  j  ])     ==     1  )      a     =     DP  [  i  -  1  ][  j  ]      if  (  j     >     0     &&     Math  .  abs  (  S  [  i  ][  j  ]     -     S  [  i  ][  j  -  1  ])     ==     1  )      b     =     DP  [  i  ][  j  -  1  ]      if     (  a     !=     0     &&     a     >=     b  )      p     =     String  (  i  -  1  )     +     ' '     +     String  (  j  )      else     if     (  b     !=     0  )      p     =     String  (  i  )     +     ' '     +     String  (  j  -  1  )      let     q     =     String  (  i  )     +     ' '     +     String  (  j  )      sequence  [  q  ]     =     p      DP  [  i  ][  j  ]     =     DP  [  i  ][  j  ]     +     Math  .  max  (  a       b  )      if     (  DP  [  i  ][  j  ]     >=     maximum  )      {      maximum     =     DP  [  i  ][  j  ]      position  [  0  ]     =     i      position  [  1  ]     =     j      }      }      }      let     snakeValues     =     []      let     snakePositions     =     []      snakeValues  .  push  (  S  [  position  [  0  ]][  position  [  1  ]])      let     check     =     'found'      let     String_next     =     String  (  position  [  0  ])     +     ' '     +     String  (  position  [  1  ])      let     findingIndices     =     sequence  [  String_next  ].  split  (  ' '  )      while  (  check     ==     'found'  )      {      if     (  sequence  [  String_next  ]     ==     'initial'  )      {      snakePositions  .  unshift  (  String_next  )      check     =     'end'      continue      }      findingIndices     =     sequence  [  String_next  ].  split  (  ' '  )      let     g     =     parseInt  (  findingIndices  [  0  ])      let     h     =     parseInt  (  findingIndices  [  1  ])      snakeValues  .  unshift  (  S  [  g  ][  h  ])      let     snake_position     =     String  (  g  )     +     ' '     +     String  (  h  )      snakePositions  .  unshift  (  String_next  )      String_next     =     sequence  [  String_next  ]      }      return     [  snakeValues       snakePositions  ]   }   // Driver Code    let     S     =     [[  9       6       5       2  ]      [  8       7       6       5  ]      [  7       3       1       6  ]      [  1       1       10       7  ]]   let     m     =     3   let     n     =     3   let     seq     =     snakesequence  (  S       m       n  )   for     (  var     i     =     0  ;     i      <     seq  [  0  ].  length  ;     i  ++  )         console  .  log  (  seq  [  0  ][  i  ]     +     ''       seq  [  1  ][  i  ].  split  (  ' '  ))   

Produksjon
Maximum length of Snake sequence is: 6 Snake sequence is: 9 (0 0) 8 (1 0) 7 (1 1) 6 (1 2) 5 (1 3) 6 (2 3) 7 (3 3) 

Tidskompleksitet av løsningen ovenfor er O (M*n). Hjelpeplass brukt av oppløsningen er O (M*n). Hvis vi ikke er pålagt å skrive ut slangeområdet, kan det reduseres ytterligere til O (n), da vi bare bruker resultatet fra siste rad.