Kleinste getal dat deelbaar is door de eerste n getallen

Kleinste getal dat deelbaar is door de eerste n getallen
Probeer het eens op GfG Practice

Gegeven een nummer N vind het kleinste getal dat deelbaar is door elk getal 1 tot en met n.
Voorbeelden:  
 

 Input : n = 4 Output : 12 Explanation : 12 is the smallest numbers divisible by all numbers from 1 to 4 Input : n = 10 Output : 2520 Input : n = 20 Output : 232792560  


Als je goed let op de jaar moet de zijn LCM van de getallen 1 t/m n
Om LCM van getallen van 1 tot n te vinden - 
 

  1. Initialiseer ans = 1. 
     
  2. Herhaal alle getallen van i = 1 tot i = n. 
    Bij de i'de iteratie ans = LCM(1 2 …….. i) . Dit kan eenvoudig worden gedaan als LCM(1 2 …. i) = LCM(ans i)
    Dus bij de volgende iteratie hoeven we alleen maar te doen - 
     
 ans = LCM(ans i) = ans * i / gcd(ans i) [Using the below property a*b = gcd(ab) * lcm(ab)]  


Opmerking : In C++-code overschrijdt het antwoord snel de limiet van gehele getallen, zelfs de lange-lange-limiet.
Hieronder ziet u de implementatie van de logica. 
 



C++
   // C++ program to find smallest number evenly divisible by    // all numbers 1 to n   #include       using     namespace     std  ;   // Function returns the lcm of first n numbers   long     long     lcm  (  long     long     n  )   {      long     long     ans     =     1  ;         for     (  long     long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  __gcd  (  ans       i  ));      return     ans  ;   }   // Driver program to test the above function   int     main  ()      {      long     long     n     =     20  ;      cout      < <     lcm  (  n  );      return     0  ;   }   
Java
   // Java program to find the smallest number evenly divisible by    // all numbers 1 to n      class   GFG  {   static     long     gcd  (  long     a       long     b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }   // Function returns the lcm of first n numbers   static     long     lcm  (  long     n  )   {      long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // Driver program to test the above function   public     static     void     main  (  String     []  args  )      {      long     n     =     20  ;      System  .  out  .  println  (  lcm  (  n  ));   }   }   
Python
   # Python program to find the smallest number evenly    # divisible by all number 1 to n    import   math   # Returns the lcm of first n numbers    def   lcm  (  n  ):   ans   =   1   for   i   in   range  (  1     n   +   1  ):   ans   =   int  ((  ans   *   i  )  /  math  .  gcd  (  ans     i  ))   return   ans   # main    n   =   20   print   (  lcm  (  n  ))   
C#
   // C# program to find smallest number   // evenly divisible by    // all numbers 1 to n    using     System  ;   public     class     GFG  {      static     long     gcd  (  long     a       long     b  )      {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else      return     b  ;      }      // Function returns the lcm of first n numbers    static     long     lcm  (  long     n  )      {         long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )         ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));         return     ans  ;      }      // Driver program to test the above function       static     public     void     Main     (){      long     n     =     20  ;         Console  .  WriteLine  (  lcm  (  n  ));         }   //This code is contributed by akt_mit    }   
Javascript
   // Javascript program to find the smallest number evenly divisible by    // all numbers 1 to n   function     gcd  (  a       b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }       // Function returns the lcm of first n numbers   function     lcm  (  n  )   {      let     ans     =     1  ;         for     (  let     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // function call          let     n     =     20  ;      console  .  log  (  lcm  (  n  ));       
PHP
      // Note: This code is not working on GFG-IDE    // because gmp libraries are not supported   // PHP program to find smallest number    // evenly divisible by all numbers 1 to n   // Function returns the lcm    // of first n numbers   function   lcm  (  $n  )   {   $ans   =   1  ;   for   (  $i   =   1  ;   $i    <=   $n  ;   $i  ++  )   $ans   =   (  $ans   *   $i  )   /   (  gmp_gcd  (  strval  (  ans  )   strval  (  i  )));   return   $ans  ;   }   // Driver Code   $n   =   20  ;   echo   lcm  (  $n  );   // This code is contributed by mits   ?>   

Uitvoer
232792560 

Tijdcomplexiteit: O(n log2n) aangezien de complexiteit van _gcd(ab) in c++ log2n is en dat n keer in een lus wordt uitgevoerd.
Hulpruimte: O(1)
De bovenstaande oplossing werkt prima voor een enkele invoer. Maar als we meerdere inputs hebben, is het een goed idee om Sieve of Eratosthenes te gebruiken om alle priemfactoren op te slaan. Raadpleeg het onderstaande artikel voor een op zeef gebaseerde aanpak. 

Aanpak: [Gebruiken Zeef van Eratosthenes ]

Om het probleem van het vinden van het kleinste getal dat deelbaar is door de eerste 'n'-getallen op een efficiëntere manier op te lossen, kunnen we de Zeef van Eratosthenes gebruiken om de priemgetallen tot 'n' vooraf te berekenen. Vervolgens kunnen we deze priemgetallen gebruiken om het kleinste gemene veelvoud (LCM) efficiënter te berekenen door de hoogste machten van elk priemgetal te beschouwen die kleiner zijn dan of gelijk zijn aan 'n'.

Stapsgewijze aanpak:

  • Genereer priemgetallen tot n: Gebruik de Zeef van Eratosthenes om alle priemgetallen tot en met 'n' te vinden.
  • Bereken de LCM met behulp van deze priemgetallen: Bepaal voor elk priemgetal de hoogste macht van dat priemgetal die kleiner is dan of gelijk is aan 'n'. Vermenigvuldig deze hoogste machten met elkaar om de LCM te krijgen

Hieronder vindt u de implementatie van bovenstaande aanpak:

C++
   #include         #include          #include         using     namespace     std  ;   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   vector   <  int  >     sieve_of_eratosthenes  (  int     n  )   {      vector   <  bool  >     is_prime  (  n     +     1       true  );      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  is_prime  [  p  ])     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      is_prime  [  i  ]     =     false  ;      }      }      ++  p  ;      }      vector   <  int  >     prime_numbers  ;      for     (  int     p     =     2  ;     p      <=     n  ;     ++  p  )     {      if     (  is_prime  [  p  ])     {      prime_numbers  .  push_back  (  p  );      }      }      return     prime_numbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   long     long     smallest_multiple  (  int     n  )   {      vector   <  int  >     primes     =     sieve_of_eratosthenes  (  n  );      long     long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      int     power     =     1  ;      while     (  pow  (  prime       power     +     1  )      <=     n  )     {      ++  power  ;      }      lcm     *=     pow  (  prime       power  );      }      return     lcm  ;   }   int     main  ()   {      int     n     =     20  ;      cout      < <     smallest_multiple  (  n  )      < <  endl  ;      return     0  ;   }   
Java
   import     java.util.ArrayList  ;   import     java.util.List  ;   public     class   SmallestMultiple     {      // Function to generate all prime numbers up to n using      // the Sieve of Eratosthenes      public     static     List   <  Integer  >     sieveOfEratosthenes  (  int     n  )      {      boolean  []     isPrime     =     new     boolean  [  n     +     1  ]  ;      for     (  int     i     =     0  ;     i      <=     n  ;     i  ++  )     {      isPrime  [  i  ]     =     true  ;      }      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ]  )     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      List   <  Integer  >     primeNumbers     =     new     ArrayList   <>  ();      for     (  int     i     =     2  ;     i      <=     n  ;     i  ++  )     {      if     (  isPrime  [  i  ]  )     {      primeNumbers  .  add  (  i  );      }      }      return     primeNumbers  ;      }      // Function to find the smallest number divisible by all      // numbers from 1 to n      public     static     long     smallestMultiple  (  int     n  )      {      List   <  Integer  >     primes     =     sieveOfEratosthenes  (  n  );      long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that      // is  <= n      int     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;      }      public     static     void     main  (  String  []     args  )      {      int     n     =     20  ;      System  .  out  .  println  (  smallestMultiple  (  n  ));      }   }   
Python
   import   math   def   sieve_of_eratosthenes  (  n  ):      '''Generate all prime numbers up to n.'''   is_prime   =   [  True  ]   *   (  n   +   1  )   p   =   2   while   (  p   *   p    <=   n  ):   if   (  is_prime  [  p  ]   ==   True  ):   for   i   in   range  (  p   *   p     n   +   1     p  ):   is_prime  [  i  ]   =   False   p   +=   1   prime_numbers   =   [  p   for   p   in   range  (  2     n   +   1  )   if   is_prime  [  p  ]]   return   prime_numbers   def   smallest_multiple  (  n  ):      '''Find the smallest number divisible by all numbers from 1 to n.'''   primes   =   sieve_of_eratosthenes  (  n  )   lcm   =   1   for   prime   in   primes  :   # Calculate the highest power of the prime that is  <= n   power   =   1   while   prime   **   (  power   +   1  )    <=   n  :   power   +=   1   lcm   *=   prime   **   power   return   lcm   # Example usage:   n   =   20   print  (  smallest_multiple  (  n  ))   
JavaScript
   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   function     sieveOfEratosthenes  (  n  )   {      let     isPrime     =     new     Array  (  n     +     1  ).  fill  (  true  );      let     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ])     {      for     (  let     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      let     primeNumbers     =     [];      for     (  let     p     =     2  ;     p      <=     n  ;     p  ++  )     {      if     (  isPrime  [  p  ])     {      primeNumbers  .  push  (  p  );      }      }      return     primeNumbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   function     smallestMultiple  (  n  )   {      let     primes     =     sieveOfEratosthenes  (  n  );      let     lcm     =     1  ;      for     (  let     prime     of     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      let     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;   }   // Example usage:   let     n     =     20  ;   console  .  log  (  smallestMultiple  (  n  ));   

Uitvoer
The smallest number divisible by all numbers from 1 to 20 is 232792560  

Tijdcomplexiteit: O(nloglogn)
Hulpruimte: Op)


Quiz maken

Top Artikelen

Categorie

Interessante Artikelen