Waarschijnlijkheid dat Ridder op het schaakbord blijft

Waarschijnlijkheid dat Ridder op het schaakbord blijft
Probeer het eens op GfG Practice

Gegeven een n*n schaakbord en de ridder positie (x y) Elke keer dat het paard een zet moet doen, kiest het een van de acht mogelijke zetten op uniforme wijze willekeurig (zelfs als het stuk van het schaakbord zou verdwijnen) en beweegt daar. De ridder gaat door bewegen totdat het precies is gemaakt k beweegt of heeft vertrok het schaakbord. De taak is om vinden de waarschijnlijkheid dat de ridder blijft op de bord nadat het is gebeurd gestopt bewegen.

Opmerking: Een schaakridder kan acht mogelijke zetten maken. Elke beweging bestaat uit twee cellen in een hoofdrichting en vervolgens één cel in een orthogonale richting.

Voorbeelden:  

Invoer: n = 8 x = 0 y = 0 k = 1
Uitgang: 0,25
Uitleg: Het paard begint bij (0 0) en zal na één stap in het bord liggen op slechts 2 van de 8 posities, namelijk (1 2) en (2 1). De waarschijnlijkheid zal dus 2/8 = 0,25 zijn.

Invoer: n = 8 x = 0 y = 0 k = 3
Uitgang: 0,125

Invoer: n = 4 x = 1 y = 2 k = 4
Uitgang: 0,024414

Inhoudsopgave

Gebruik van Top-Down Dp (Memoisatie) - O(n*n*k) Tijd en O(n*n*k) Ruimte

De kans dat een paard op het schaakbord blijft na k zetten is gelijk aan het gemiddelde van de kans dat een paard op de voorgaande acht posities staat na k - 1 zetten. Op dezelfde manier hangt de waarschijnlijkheid na k-1-bewegingen af ​​van het gemiddelde van de waarschijnlijkheid na k-2-bewegingen. Het idee is om te gebruiken memoriseren om de kansen van eerdere zetten op te slaan en hun gemiddelde te vinden om het eindresultaat te berekenen.
Maak hiervoor een 3D-arraymemo[][][] waar memo[i][j][k] slaat de waarschijnlijkheid op dat het paard zich na k zetten in cel (ij) bevindt. Als k nul is, d.w.z. de begintoestand wordt bereikt retour 1 anders onderzoek de vorige acht posities en vind het gemiddelde van hun kansen.

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // recursive function to calculate   // knight probability   double     knightProbability  (  int     n       int     x       int     y       int     k           vector   <  vector   <  vector   <  double  >>>     &  memo  ){      // Base case initial probability      if  (  k     ==     0  )     return     1.0  ;      // check if already calculated      if  (  memo  [  x  ][  y  ][  k  ]     !=     -1  )     return     memo  [  x  ][  y  ][  k  ];      vector   <  vector   <  int  >>     directions     =     {{  1       2  }     {  2       1  }     {  2       -1  }      {  1       -2  }     {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }};      memo  [  x  ][  y  ][  k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (xy)      for  (  auto     d  :  directions  ){      int     u     =     x     +     d  [  0  ];      int     v     =     y     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     knightProbability  (  n       u       v       k  -1       memo  )     /     8.0  ;      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;   }   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      vector   <  vector   <  vector   <  double  >>>     memo  (  n           vector   <  vector   <  double  >>  (  n        vector   <  double  >     (  k  +  1       -1  )));      return     knightProbability  (  n       x       y       k       memo  );   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   class   GfG     {      // recursive function to calculate      // knight probability      static     double     knightProbability  (  int     n       int     x           int     y       int     k       double  [][][]     memo  )     {      // Base case initial probability      if     (  k     ==     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x  ][  y  ][  k  ]     !=     -  1  )     return     memo  [  x  ][  y  ][  k  ]  ;      int  [][]     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      memo  [  x  ][  y  ][  k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int  []     d     :     directions  )     {      int     u     =     x     +     d  [  0  ]  ;      int     v     =     y     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     knightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;      }      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      double  [][][]     memo     =     new     double  [  n  ][  n  ][  k     +     1  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      for     (  int     m     =     0  ;     m      <=     k  ;     m  ++  )     {      memo  [  i  ][  j  ][  m  ]     =     -  1  ;      }      }      }      return     knightProbability  (  n       x       y       k       memo  );      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   # recursive function to calculate   # knight probability   def   knightProbability  (  n     x     y     k     memo  ):   # Base case initial probability   if   k   ==   0  :   return   1.0   # check if already calculated   if   memo  [  x  ][  y  ][  k  ]   !=   -  1  :   return   memo  [  x  ][  y  ][  k  ]   directions   =   [   [  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]   ]   memo  [  x  ][  y  ][  k  ]   =   0   cur   =   0.0   # for every position reachable from (x y)   for   d   in   directions  :   u   =   x   +   d  [  0  ]   v   =   y   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   knightProbability  (  n     u     v     k   -   1     memo  )   /   8.0   memo  [  x  ][  y  ][  k  ]   =   cur   return   cur   # Function to find the probability   def   findProb  (  n     x     y     k  ):   # Initialize memo to store results   memo   =   [[[  -  1   for   _   in   range  (  k   +   1  )]   for   _   in   range  (  n  )]   for   _   in   range  (  n  )]   return   knightProbability  (  n     x     y     k     memo  )   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // recursive function to calculate      // knight probability      static     double     KnightProbability  (  int     n       int     x           int     y       int     k       double  []     memo  )     {      // Base case initial probability      if     (  k     ==     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x       y       k  ]     !=     -  1  )     return     memo  [  x       y       k  ];      int  []     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      memo  [  x       y       k  ]     =     0  ;      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int     i     =     0  ;     i      <     8  ;     i  ++  )     {      int     u     =     x     +     directions  [  i       0  ];      int     v     =     y     +     directions  [  i       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     KnightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      }      return     memo  [  x       y       k  ]     =     cur  ;      }      // Function to find the probability      static     double     FindProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize memo to store results      double  []     memo     =     new     double  [  n       n       k     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      for     (  int     m     =     0  ;     m      <=     k  ;     m  ++  )     {      memo  [  i       j       m  ]     =     -  1  ;      }      }      }      return     KnightProbability  (  n       x       y       k       memo  );      }      static     void     Main  ()     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  FindProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   // recursive function to calculate   // knight probability   function     knightProbability  (  n       x       y       k       memo  )     {      // Base case initial probability      if     (  k     ===     0  )     return     1.0  ;      // check if already calculated      if     (  memo  [  x  ][  y  ][  k  ]     !==     -  1  )     return     memo  [  x  ][  y  ][  k  ];      const     directions     =     [      [  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]      [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]      ];      memo  [  x  ][  y  ][  k  ]     =     0  ;      let     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  let     d     of     directions  )     {      const     u     =     x     +     d  [  0  ];      const     v     =     y     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     knightProbability  (  n       u       v       k     -     1       memo  )     /     8.0  ;      }      }      return     memo  [  x  ][  y  ][  k  ]     =     cur  ;   }   // Function to find the probability   function     findProb  (  n       x       y       k  )     {      // Initialize memo to store results      const     memo     =     Array  .  from  ({     length  :     n     }     ()     =>      Array  .  from  ({     length  :     n     }     ()     =>     Array  (  k     +     1  ).  fill  (  -  1  )));      return     knightProbability  (  n       x       y       k       memo  ).  toFixed  (  6  );   }   const     n     =     8       x     =     0       y     =     0       k     =     3  ;      console  .  log  (  findProb  (  n       x       y       k  ));   

Uitvoer
0.125  

Bottom-up Dp gebruiken (tabellering) - O(n*n*k) tijd en O(n*n*k) ruimte

De bovenstaande aanpak kan worden geoptimaliseerd met behulp van van onderop tabellering waardoor de extra ruimte die nodig is voor recursieve stapeling wordt verminderd. Het idee is om een ​​3 te behouden D-array dp[][][] waar dp[i][j][k] slaat de waarschijnlijkheid op dat het paard zich in de cel bevindt (ik) na k beweegt. Initialiseer de 0e staat van dp met waarde 1 . Voor elke volgende zet wordt de waarschijnlijkheid van ridder zal zijn gelijkwaardig naar gemiddeld van de waarschijnlijkheid van vorig 8 posities later k-1 beweegt.

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      vector   <  vector   <  vector   <  double  >>>     dp  (  n           vector   <  vector   <  double  >>  (  n        vector   <  double  >     (  k  +  1  )));          // Initialize dp for step 0      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      dp  [  i  ][  j  ][  0  ]     =     1.0  ;      }      }      vector   <  vector   <  int  >>     directions     =     {      {  1       2  }     {  2       1  }     {  2       -1  }     {  1       -2  }         {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  auto     d  :  directions  )     {      int     u     =     i     +     d  [  0  ];      int     v     =     j     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ];   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   import     java.util.*  ;   class   GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      double  [][][]     dp     =     new     double  [  n  ][  n  ][  k     +     1  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      dp  [  i  ][  j  ][  0  ]     =     1  ;      }      }      int  [][]     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }         {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int  []     d     :     directions  )     {      int     u     =     i     +     d  [  0  ]  ;      int     v     =     j     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   # Function to find the probability   def   findProb  (  n     x     y     k  ):   # Initialize dp to store results of each step   dp   =   [[[  0   for   _   in   range  (  k   +   1  )]   for   _   in   range  (  n  )]   for   _   in   range  (  n  )]   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   dp  [  i  ][  j  ][  0  ]   =   1.0   directions   =   [[  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]]   for   move   in   range  (  1     k   +   1  ):   # find probability for cell (i j)   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   cur   =   0.0   # for every position reachable from (x y)   for   d   in   directions  :   u   =   i   +   d  [  0  ]   v   =   j   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   dp  [  u  ][  v  ][  move   -   1  ]   /   8.0   # store the result   dp  [  i  ][  j  ][  move  ]   =   cur   # return the result   return   dp  [  x  ][  y  ][  k  ]   if   __name__   ==   '__main__'  :   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // Initialize dp to store results of each step      double  []     dp     =     new     double  [  n       n       k     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      dp  [  i       j       0  ]     =     1.0  ;      }      }      int  []     directions     =     {{  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }         {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }};      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  int     d     =     0  ;     d      <     directions  .  GetLength  (  0  );     d  ++  )     {      int     u     =     i     +     directions  [  d       0  ];      int     v     =     j     +     directions  [  d       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u       v       move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i       j       move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x       y       k  ];      }      static     void     Main  (  string  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  findProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   // Function to find the probability   function     findProb  (  n       x       y       k  )     {      // Initialize dp to store results of each step      let     dp     =     Array  .  from  ({     length  :     n     }     ()     =>         Array  .  from  ({     length  :     n     }     ()     =>     Array  (  k     +     1  ).  fill  (  0  ))      );      // Initialize dp for step 0      for     (  let     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  let     j     =     0  ;     j      <     n  ;     ++  j  )     {      dp  [  i  ][  j  ][  0  ]     =     1.0  ;      }      }          let     directions     =     [[  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]         [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]];      for     (  let     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      let     cur     =     0.0  ;      // for every position reachable from (x y)      for     (  let     d     of     directions  )     {      let     u     =     i     +     d  [  0  ];      let     v     =     j     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )     {      cur     +=     dp  [  u  ][  v  ][  move     -     1  ]     /     8.0  ;      }      }      // store the result      dp  [  i  ][  j  ][  move  ]     =     cur  ;      }      }      }      // return the result      return     dp  [  x  ][  y  ][  k  ].  toFixed  (  6  );   }   let     n     =     8       x     =     0       y     =     0       k     =     3  ;   console  .  log  (  findProb  (  n       x       y       k  ));   

Uitvoer
0.125  

Gebruik van voor ruimte geoptimaliseerde Dp - O(n*n*k) tijd en O(n*n) ruimte

De bovenstaande aanpak vereist alleen vorig staat van waarschijnlijkheden om de te berekenen huidig aldus vermelden alleen de vorig winkel moet worden opgeslagen. Het idee is om er twee te maken 2D-arrays vorigeVerplaats[][] En huidigeVerplaats[][] waar

  • prevMove[i][j] slaat de waarschijnlijkheid op dat het paard op (i j) staat tot aan de vorige zet. Het wordt geïnitialiseerd met waarde 1 voor de initiële status.
  • currMove[i][j] slaat de waarschijnlijkheid van de huidige status op.

Werk op dezelfde manier als de bovenstaande aanpak en op einde van elke iteratie update vorigeVerplaats[][] met waarde erin opgeslagen huidigeVerplaats[][].

C++
   // C++ program to find the probability of the   // knight to remain inside the chessboard   #include          using     namespace     std  ;   // Function to find the probability   double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      vector   <  vector   <  double  >>     prevMove  (  n       vector   <  double  >  (  n       1  ));      // dp to store results of current move      vector   <  vector   <  double  >>     currMove  (  n       vector   <  double  >  (  n       0  ));      vector   <  vector   <  int  >>     directions     =     {      {  1       2  }     {  2       1  }     {  2       -1  }     {  1       -2  }         {  -1       -2  }     {  -2       -1  }     {  -2       1  }     {  -1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {          // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  auto     d  :  directions  )     {      int     u     =     i     +     d  [  0  ];      int     v     =     j     +     d  [  1  ];      // if this position lie inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      prevMove     =     currMove  ;      }      // return the result      return     prevMove  [  x  ][  y  ];   }   int     main  (){      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      cout      < <     findProb  (  n       x       y       k  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the probability of the   // knight to remain inside the chessboard   class   GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      double  [][]     prevMove     =     new     double  [  n  ][  n  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      prevMove  [  i  ][  j  ]     =     1.0  ;      }      }      // dp to store results of current move      double  [][]     currMove     =     new     double  [  n  ][  n  ]  ;      int  [][]     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  int  []     d     :     directions  )     {      int     u     =     i     +     d  [  0  ]  ;      int     v     =     j     +     d  [  1  ]  ;      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      System  .  arraycopy  (  currMove  [  i  ]       0       prevMove  [  i  ]       0       n  );      }      }      // return the result      return     prevMove  [  x  ][  y  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      System  .  out  .  println  (  findProb  (  n       x       y       k  ));      }   }   
Python
   # Python program to find the probability of the   # knight to remain inside the chessboard   def   findProb  (  n     x     y     k  ):   # dp to store results of previous move   prevMove   =   [[  1.0  ]   *   n   for   _   in   range  (  n  )]   # dp to store results of current move   currMove   =   [[  0.0  ]   *   n   for   _   in   range  (  n  )]   directions   =   [   [  1     2  ]   [  2     1  ]   [  2     -  1  ]   [  1     -  2  ]   [  -  1     -  2  ]   [  -  2     -  1  ]   [  -  2     1  ]   [  -  1     2  ]   ]   for   move   in   range  (  1     k   +   1  ):   # find probability for cell (i j)   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   cur   =   0.0   # for every position reachable from (xy)   for   d   in   directions  :   u     v   =   i   +   d  [  0  ]   j   +   d  [  1  ]   # if this position lies inside the board   if   0    <=   u    <   n   and   0    <=   v    <   n  :   cur   +=   prevMove  [  u  ][  v  ]   /   8.0   # store the result   currMove  [  i  ][  j  ]   =   cur   # update previous state   prevMove   =   [  row  [:]   for   row   in   currMove  ]   # return the result   return   prevMove  [  x  ][  y  ]   if   __name__   ==   '__main__'  :   n     x     y     k   =   8     0     0     3   print  (  findProb  (  n     x     y     k  ))   
C#
   // C# program to find the probability of the   // knight to remain inside the chessboard   using     System  ;   class     GfG     {      // Function to find the probability      static     double     findProb  (  int     n       int     x       int     y       int     k  )     {      // dp to store results of previous move      double  []     prevMove     =     new     double  [  n       n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )      prevMove  [  i       j  ]     =     1.0  ;      // dp to store results of current move      double  []     currMove     =     new     double  [  n       n  ];      int  []     directions     =     {      {  1       2  }     {  2       1  }     {  2       -  1  }     {  1       -  2  }      {  -  1       -  2  }     {  -  2       -  1  }     {  -  2       1  }     {  -  1       2  }      };      for     (  int     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      for     (  int     j     =     0  ;     j      <     n  ;     ++  j  )     {      double     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  int     d     =     0  ;     d      <     directions  .  GetLength  (  0  );     d  ++  )     {      int     u     =     i     +     directions  [  d       0  ];      int     v     =     j     +     directions  [  d       1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u       v  ]     /     8.0  ;      }      // store the result      currMove  [  i       j  ]     =     cur  ;      }      }      // update previous state      Array  .  Copy  (  currMove       prevMove       n     *     n  );      }      // return the result      return     prevMove  [  x       y  ];      }      static     void     Main  ()     {      int     n     =     8       x     =     0       y     =     0       k     =     3  ;      Console  .  WriteLine  (  findProb  (  n       x       y       k  ));      }   }   
JavaScript
   // JavaScript program to find the probability of the   // knight to remain inside the chessboard   function     findProb  (  n       x       y       k  )     {      // dp to store results of previous move      let     prevMove     =     Array  .  from  ({     length  :     n     }         ()     =>     Array  (  n  ).  fill  (  1.0  ));      // dp to store results of current move      let     currMove     =     Array  .  from  ({     length  :     n     }         ()     =>     Array  (  n  ).  fill  (  0.0  ));      const     directions     =     [      [  1       2  ]     [  2       1  ]     [  2       -  1  ]     [  1       -  2  ]      [  -  1       -  2  ]     [  -  2       -  1  ]     [  -  2       1  ]     [  -  1       2  ]      ];      for     (  let     move     =     1  ;     move      <=     k  ;     move  ++  )     {      // find probability for cell (i j)      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      let     cur     =     0.0  ;      // for every position reachable from (xy)      for     (  let     d     of     directions  )     {      let     u     =     i     +     d  [  0  ];      let     v     =     j     +     d  [  1  ];      // if this position lies inside the board      if     (  u     >=     0     &&     u      <     n     &&     v     >=     0     &&     v      <     n  )      cur     +=     prevMove  [  u  ][  v  ]     /     8.0  ;      }      // store the result      currMove  [  i  ][  j  ]     =     cur  ;      }      }      // update previous state      prevMove     =     currMove  .  map  (  row     =>     [...  row  ]);      }      // return the result      return     prevMove  [  x  ][  y  ].  toFixed  (  6  );   }   let     n     =     8       x     =     0       y     =     0       k     =     3  ;   console  .  log  (  findProb  (  n       x       y       k  ));   

Uitvoer
0.125  
Quiz maken