LCA voor n-aire boom | Constante vraag O(1)

LCA voor n-aire boom | Constante vraag O(1)

We hebben verschillende methoden met verschillende tijdcomplexiteiten gezien om LCA in een n-aire boom te berekenen: -

Methode 1: Naïeve methode (door het pad van wortel naar knooppunt te berekenen) | O(n) per zoekopdracht  
Methode 2: Sqrt-ontleding gebruiken | O(vierkant H)  
Methode 3: Gebruik van Sparse Matrix DP-benadering | O(login) 

Laten we een andere methode bestuderen die een snellere querytijd heeft dan alle bovenstaande methoden. Ons doel is dus om de LCA in te berekenen constante tijd ~ O(1) . Laten we kijken hoe we dit kunnen bereiken. 

Methode 4: Minimumquery voor bereik gebruiken 

Wij hebben besproken LCA en RMQ voor binaire boom . Hier bespreken we de conversie van LCA-problemen naar RMQ-problemen voor een n-aire boom. 

  Pre-requisites:-     LCA in Binary Tree using RMQ     RMQ using sparse table   

Sleutelconcept: Bij deze methode zullen we ons LCA-probleem reduceren tot een RMQ-probleem (Range Minimum Query) over een statische array. Zodra we dat hebben gedaan, relateren we de minimumquery's voor het bereik aan de vereiste LCA-query's. 

De eerste stap zal zijn om de boom te ontbinden in een vlakke lineaire array. Om dit te doen kunnen we de Eulerwandeling toepassen. De Euler-wandeling geeft de pre-order-doorgang van de grafiek. We zullen dus een Euler Walk op de boom uitvoeren en de knooppunten in een array opslaan terwijl we ze bezoeken. Dit proces verkleint de boom > 16901489_1309372785813855_1903972436_n


Laten we nu in algemene termen denken: beschouw twee willekeurige knooppunten in de boom. Er zal precies één pad zijn dat beide knooppunten verbindt, en het knooppunt met de kleinste dieptewaarde in het pad zal de LCA van de twee gegeven knooppunten zijn.
Neem nu twee verschillende knooppunten in En v in de Euler-walk-array. Nu zullen alle elementen in het pad van u naar v tussen de index van knooppunten u en v in de Euler-walk-array liggen. Daarom hoeven we alleen maar het knooppunt te berekenen met de minimale diepte tussen de index van knooppunt u en knooppunt v in de euler-array. 

Hiervoor zullen we een andere array bijhouden die de diepte van alle knooppunten bevat die overeenkomen met hun positie in de Euler walk-array, zodat we ons RMQ-algoritme erop kunnen toepassen.

Hieronder is de euler walk-array evenwijdig aan zijn dieptespoorarray weergegeven. 

16934185_1309372782480522_1333490382_n


Voorbeeld: - Beschouw twee knooppunten knooppunt 6 En knooppunt 7 in de euler-array. Om de LCA van knooppunt 6 en knooppunt 7 te berekenen, kijken we naar de kleinste dieptewaarde voor alle knooppunten tussen knooppunt 6 en knooppunt 7. 
Daarom knooppunt 1 heeft de kleinste dieptewaarde = 0 en daarom is dit de LCA voor knooppunt 6 en knooppunt 7.

Uitvoering:-  

We will be maintaining three arrays   1)  Euler Path   2)  Depth array   3)  First Appearance Index 

Euler Path en Depth-array zijn hetzelfde als hierboven beschreven

Eerste verschijningsindex FAI[]: De First Appearance index Array slaat de index op voor de eerste positie van elk knooppunt in de Euler Path-array. FAI[i] = Eerste verschijning van het i-de knooppunt in de Euler Walk-array. 

De implementatie voor de bovenstaande methode wordt hieronder gegeven: -

Uitvoering:

C++
   // C++ program to demonstrate LCA of n-ary tree   // in constant time.   #include     'bits/stdc++.h'   using     namespace     std  ;   #define sz 101   vector      <     int     >     adj  [  sz  ];     // stores the tree   vector      <     int     >     euler  ;     // tracks the eulerwalk   vector      <     int     >     depthArr  ;     // depth for each node corresponding      // to eulerwalk   int     FAI  [  sz  ];     // stores first appearance index of every node   int     level  [  sz  ];     // stores depth for all nodes in the tree   int     ptr  ;     // pointer to euler walk   int     dp  [  sz  ][  18  ];     // sparse table   int     logn  [  sz  ];     // stores log values   int     p2  [  20  ];     // stores power of 2   void     buildSparseTable  (  int     n  )   {      // initializing sparse table      memset  (  dp    -1    sizeof  (  dp  ));      // filling base case values      for     (  int     i  =  1  ;     i   <  n  ;     i  ++  )      dp  [  i  -1  ][  0  ]     =     (  depthArr  [  i  ]  >  depthArr  [  i  -1  ])  ?  i  -1  :  i  ;      // dp to fill sparse table      for     (  int     l  =  1  ;     l   <  15  ;     l  ++  )      for     (  int     i  =  0  ;     i   <  n  ;     i  ++  )      if     (  dp  [  i  ][  l  -1  ]  !=  -1     and     dp  [  i  +  p2  [  l  -1  ]][  l  -1  ]  !=  -1  )      dp  [  i  ][  l  ]     =      (  depthArr  [  dp  [  i  ][  l  -1  ]]  >  depthArr  [  dp  [  i  +  p2  [  l  -1  ]][  l  -1  ]])  ?      dp  [  i  +  p2  [  l  -1  ]][  l  -1  ]     :     dp  [  i  ][  l  -1  ];      else      break  ;   }   int     query  (  int     l    int     r  )   {      int     d     =     r  -  l  ;      int     dx     =     logn  [  d  ];      if     (  l  ==  r  )     return     l  ;      if     (  depthArr  [  dp  [  l  ][  dx  ]]     >     depthArr  [  dp  [  r  -  p2  [  dx  ]][  dx  ]])      return     dp  [  r  -  p2  [  dx  ]][  dx  ];      else      return     dp  [  l  ][  dx  ];   }   void     preprocess  ()   {      // memorizing powers of 2      p2  [  0  ]     =     1  ;      for     (  int     i  =  1  ;     i   <  18  ;     i  ++  )      p2  [  i  ]     =     p2  [  i  -1  ]  *  2  ;      // memorizing all log(n) values      int     val     =     1    ptr  =  0  ;      for     (  int     i  =  1  ;     i   <  sz  ;     i  ++  )      {      logn  [  i  ]     =     ptr  -1  ;      if     (  val  ==  i  )      {      val  *=  2  ;      logn  [  i  ]     =     ptr  ;      ptr  ++  ;      }      }   }   /**    * Euler Walk ( preorder traversal)    * converting tree to linear depthArray    * Time Complexity : O(n)    * */   void     dfs  (  int     cur    int     prev    int     dep  )   {      // marking FAI for cur node      if     (  FAI  [  cur  ]  ==  -1  )      FAI  [  cur  ]     =     ptr  ;      level  [  cur  ]     =     dep  ;      // pushing root to euler walk      euler  .  push_back  (  cur  );      // incrementing euler walk pointer      ptr  ++  ;      for     (  auto     x  :  adj  [  cur  ])      {      if     (  x     !=     prev  )      {      dfs  (  x    cur    dep  +  1  );      // pushing cur again in backtrack      // of euler walk      euler  .  push_back  (  cur  );      // increment euler walk pointer      ptr  ++  ;      }      }   }   // Create Level depthArray corresponding   // to the Euler walk Array   void     makeArr  ()   {      for     (  auto     x     :     euler  )      depthArr  .  push_back  (  level  [  x  ]);   }   int     LCA  (  int     u    int     v  )   {      // trivial case      if     (  u  ==  v  )      return     u  ;      if     (  FAI  [  u  ]     >     FAI  [  v  ])      swap  (  u    v  );      // doing RMQ in the required range      return     euler  [  query  (  FAI  [  u  ]     FAI  [  v  ])];   }   void     addEdge  (  int     u    int     v  )   {      adj  [  u  ].  push_back  (  v  );      adj  [  v  ].  push_back  (  u  );   }   int     main  (  int     argc       char     const     *  argv  [])   {      // constructing the described tree      int     numberOfNodes     =     8  ;      addEdge  (  1    2  );      addEdge  (  1    3  );      addEdge  (  2    4  );      addEdge  (  2    5  );      addEdge  (  2    6  );      addEdge  (  3    7  );      addEdge  (  3    8  );      // performing required precalculations      preprocess  ();      // doing the Euler walk      ptr     =     0  ;      memset  (  FAI    -1    sizeof  (  FAI  ));      dfs  (  1    0    0  );      // creating depthArray corresponding to euler[]      makeArr  ();      // building sparse table      buildSparseTable  (  depthArr  .  size  ());      cout      < <     'LCA(67) : '      < <     LCA  (  6    7  )      < <     '  n  '  ;      cout      < <     'LCA(64) : '      < <     LCA  (  6    4  )      < <     '  n  '  ;      return     0  ;   }   
Java
   // Java program to demonstrate LCA of n-ary   // tree in constant time.   import     java.util.ArrayList  ;   import     java.util.Arrays  ;   class   GFG  {   static     int     sz     =     101  ;   @SuppressWarnings  (  'unchecked'  )   // Stores the tree   static     ArrayList   <  Integer  >[]     adj     =     new     ArrayList  [  sz  ]  ;      // Tracks the eulerwalk   static     ArrayList   <  Integer  >     euler     =     new     ArrayList   <>  ();      // Depth for each node corresponding   static     ArrayList   <  Integer  >     depthArr     =     new     ArrayList   <>  ();      // to eulerwalk   // Stores first appearance index of every node   static     int  []     FAI     =     new     int  [  sz  ]  ;      // Stores depth for all nodes in the tree   static     int  []     level     =     new     int  [  sz  ]  ;      // Pointer to euler walk   static     int     ptr  ;   // Sparse table   static     int  [][]     dp     =     new     int  [  sz  ][  18  ]  ;   // Stores log values   static     int  []     logn     =     new     int  [  sz  ]  ;   // Stores power of 2   static     int  []     p2     =     new     int  [  20  ]  ;   static     void     buildSparseTable  (  int     n  )   {          // Initializing sparse table      for  (  int     i     =     0  ;     i      <     sz  ;     i  ++  )      {      for  (  int     j     =     0  ;     j      <     18  ;     j  ++  )         {      dp  [  i  ][  j  ]     =     -  1  ;      }      }      // Filling base case values      for  (  int     i     =     1  ;     i      <     n  ;     i  ++  )      dp  [  i     -     1  ][  0  ]     =     (  depthArr  .  get  (  i  )     >         depthArr  .  get  (  i     -     1  ))     ?         i     -     1     :     i  ;      // dp to fill sparse table      for  (  int     l     =     1  ;     l      <     15  ;     l  ++  )      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      if     (  dp  [  i  ][  l     -     1  ]     !=     -  1     &&      dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]     !=     -  1  )      dp  [  i  ][  l  ]     =     (  depthArr  .  get  (  dp  [  i  ][  l     -     1  ]  )     >      depthArr  .  get  (      dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]  ))     ?         dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]     :         dp  [  i  ][  l     -     1  ]  ;      else      break  ;   }   static     int     query  (  int     l       int     r  )      {      int     d     =     r     -     l  ;      int     dx     =     logn  [  d  ]  ;          if     (  l     ==     r  )      return     l  ;          if     (  depthArr  .  get  (  dp  [  l  ][  dx  ]  )     >         depthArr  .  get  (  dp  [  r     -     p2  [  dx  ]][  dx  ]  ))      return     dp  [  r     -     p2  [  dx  ]][  dx  ]  ;      else      return     dp  [  l  ][  dx  ]  ;   }   static     void     preprocess  ()      {          // Memorizing powers of 2      p2  [  0  ]     =     1  ;      for  (  int     i     =     1  ;     i      <     18  ;     i  ++  )      p2  [  i  ]     =     p2  [  i     -     1  ]     *     2  ;      // Memorizing all log(n) values      int     val     =     1       ptr     =     0  ;      for  (  int     i     =     1  ;     i      <     sz  ;     i  ++  )         {      logn  [  i  ]     =     ptr     -     1  ;      if     (  val     ==     i  )         {      val     *=     2  ;      logn  [  i  ]     =     ptr  ;      ptr  ++  ;      }      }   }   // Euler Walk ( preorder traversal) converting   // tree to linear depthArray    // Time Complexity : O(n)   static     void     dfs  (  int     cur       int     prev       int     dep  )   {          // Marking FAI for cur node      if     (  FAI  [  cur  ]     ==     -  1  )      FAI  [  cur  ]     =     ptr  ;      level  [  cur  ]     =     dep  ;      // Pushing root to euler walk      euler  .  add  (  cur  );      // Incrementing euler walk pointer      ptr  ++  ;      for  (  Integer     x     :     adj  [  cur  ]  )      {      if     (  x     !=     prev  )      {      dfs  (  x       cur       dep     +     1  );      // Pushing cur again in backtrack      // of euler walk      euler  .  add  (  cur  );      // Increment euler walk pointer      ptr  ++  ;      }      }   }   // Create Level depthArray corresponding   // to the Euler walk Array   static     void     makeArr  ()   {      for  (  Integer     x     :     euler  )      depthArr  .  add  (  level  [  x  ]  );   }   static     int     LCA  (  int     u       int     v  )      {          // Trivial case      if     (  u     ==     v  )      return     u  ;      if     (  FAI  [  u  ]     >     FAI  [  v  ]  )      {      int     temp     =     u  ;      u     =     v  ;      v     =     temp  ;      }      // Doing RMQ in the required range      return     euler  .  get  (  query  (  FAI  [  u  ]       FAI  [  v  ]  ));   }   static     void     addEdge  (  int     u       int     v  )   {      adj  [  u  ]  .  add  (  v  );      adj  [  v  ]  .  add  (  u  );   }   // Driver code   public     static     void     main  (  String  []     args  )   {      for  (  int     i     =     0  ;     i      <     sz  ;     i  ++  )      {      adj  [  i  ]     =     new     ArrayList   <>  ();      }          // Constructing the described tree      int     numberOfNodes     =     8  ;      addEdge  (  1       2  );      addEdge  (  1       3  );      addEdge  (  2       4  );      addEdge  (  2       5  );      addEdge  (  2       6  );      addEdge  (  3       7  );      addEdge  (  3       8  );      // Performing required precalculations      preprocess  ();      // Doing the Euler walk      ptr     =     0  ;      Arrays  .  fill  (  FAI       -  1  );      dfs  (  1       0       0  );      // Creating depthArray corresponding to euler[]      makeArr  ();          // Building sparse table      buildSparseTable  (  depthArr  .  size  ());      System  .  out  .  println  (  'LCA(67) : '     +     LCA  (  6       7  ));      System  .  out  .  println  (  'LCA(64) : '     +     LCA  (  6       4  ));   }   }   // This code is contributed by sanjeev2552   
Python3
   # Python program to demonstrate LCA of n-ary tree   # in constant time.   from   typing   import   List   # stores the tree   adj   =   [[]   for   _   in   range  (  101  )]   # tracks the eulerwalk   euler   =   []   # depth for each node corresponding to eulerwalk   depthArr   =   []   # stores first appearance index of every node   FAI   =   [  -  1  ]   *   101   # stores depth for all nodes in the tree   level   =   [  0  ]   *   101   # pointer to euler walk   ptr   =   0   # sparse table   dp   =   [[  -  1  ]   *   18   for   _   in   range  (  101  )]   # stores log values   logn   =   [  0  ]   *   101   # stores power of 2   p2   =   [  0  ]   *   20   def   buildSparseTable  (  n  :   int  ):   # initializing sparse table   for   i   in   range  (  n  ):   dp  [  i  ][  0  ]   =   i  -  1   if   depthArr  [  i  ]   >   depthArr  [  i  -  1  ]   else   i   # dp to fill sparse table   for   l   in   range  (  1     15  ):   for   i   in   range  (  n  ):   if   dp  [  i  ][  l  -  1  ]   !=   -  1   and   dp  [  i  +  p2  [  l  -  1  ]][  l  -  1  ]   !=   -  1  :   dp  [  i  ][  l  ]   =   dp  [  i  +  p2  [  l  -  1  ]][  l  -  1  ]   if   depthArr  [  dp  [  i  ][  l  -  1  ]   ]   >   depthArr  [  dp  [  i  +  p2  [  l  -  1  ]][  l  -  1  ]]   else   dp  [  i  ][  l  -  1  ]   else  :   break   def   query  (  l  :   int     r  :   int  )   ->   int  :   d   =   r  -  l   dx   =   logn  [  d  ]   if   l   ==   r  :   return   l   if   depthArr  [  dp  [  l  ][  dx  ]]   >   depthArr  [  dp  [  r  -  p2  [  dx  ]][  dx  ]]:   return   dp  [  r  -  p2  [  dx  ]][  dx  ]   else  :   return   dp  [  l  ][  dx  ]   def   preprocess  ():   global   ptr   # memorizing powers of 2   p2  [  0  ]   =   1   for   i   in   range  (  1     18  ):   p2  [  i  ]   =   p2  [  i  -  1  ]  *  2   # memorizing all log(n) values   val   =   1   ptr   =   0   for   i   in   range  (  1     101  ):   logn  [  i  ]   =   ptr  -  1   if   val   ==   i  :   val   *=   2   logn  [  i  ]   =   ptr   ptr   +=   1   def   dfs  (  cur  :   int     prev  :   int     dep  :   int  ):   global   ptr   # marking FAI for cur node   if   FAI  [  cur  ]   ==   -  1  :   FAI  [  cur  ]   =   ptr   level  [  cur  ]   =   dep   # pushing root to euler walk   euler  .  append  (  cur  )   # incrementing euler walk pointer   ptr   +=   1   for   x   in   adj  [  cur  ]:   if   x   !=   prev  :   dfs  (  x     cur     dep  +  1  )   # pushing cur again in backtrack   # of euler walk   euler  .  append  (  cur  )   # increment euler walk pointer   ptr   +=   1   # Create Level depthArray corresponding   # to the Euler walk Array   def   makeArr  ():   global   depthArr   for   x   in   euler  :   depthArr  .  append  (  level  [  x  ])   def   LCA  (  u  :   int     v  :   int  )   ->   int  :   # trivial case   if   u   ==   v  :   return   u   if   FAI  [  u  ]   >   FAI  [  v  ]:   u     v   =   v     u   # doing RMQ in the required range   return   euler  [  query  (  FAI  [  u  ]   FAI  [  v  ])]   def   addEdge  (  u     v  ):   adj  [  u  ]  .  append  (  v  )   adj  [  v  ]  .  append  (  u  )   # constructing the described tree   numberOfNodes   =   8   addEdge  (  1     2  )   addEdge  (  1     3  )   addEdge  (  2     4  )   addEdge  (  2     5  )   addEdge  (  2     6  )   addEdge  (  3     7  )   addEdge  (  3     8  )   # performing required precalculations   preprocess  ()   # doing the Euler walk   ptr   =   0   FAI   =   [  -  1  ]   *   (  numberOfNodes   +   1  )   dfs  (  1     0     0  )   # creating depthArray corresponding to euler[]   makeArr  ()   # building sparse table   buildSparseTable  (  len  (  depthArr  ))   print  (  'LCA(67) : '     LCA  (  6     7  ))   print  (  'LCA(64) : '     LCA  (  6     4  ))   
C#
   // C# program to demonstrate LCA of n-ary   // tree in constant time.   using     System  ;   using     System.Collections.Generic  ;   public     class     GFG     {      static     int     sz     =     101  ;      // Stores the tree      static     List   <  int  >  []     adj     =     new     List   <  int  >  [  sz  ];          // Tracks the eulerwalk      static     List   <  int  >     euler     =     new     List   <  int  >  ();          // Depth for each node corresponding      static     List   <  int  >     depthArr     =     new     List   <  int  >  ();          // to eulerwalk      // Stores first appearance index of every node      static     int  []     FAI     =     new     int  [  sz  ];          // Stores depth for all nodes in the tree      static     int  []     level     =     new     int  [  sz  ];          // Pointer to euler walk      static     int     ptr  ;          // Sparse table      static     int  []     dp     =     new     int  [  sz       18  ];          // Stores log values      static     int  []     logn     =     new     int  [  sz  ];          // Stores power of 2      static     int  []     p2     =     new     int  [  20  ];          static     void     buildSparseTable  (  int     n  )      {      // Initializing sparse table      for  (  int     i     =     0  ;     i      <     sz  ;     i  ++  )      {      for  (  int     j     =     0  ;     j      <     18  ;     j  ++  )         {      dp  [  i    j  ]     =     -  1  ;      }      }          // Filling base case values      for  (  int     i     =     1  ;     i      <     n  ;     i  ++  )      dp  [  i     -     1    0  ]     =     (  depthArr  [  i  ]     >     depthArr  [  i     -     1  ])     ?     i     -     1     :     i  ;          // dp to fill sparse table      for  (  int     l     =     1  ;     l      <     15  ;     l  ++  )      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      if     (  dp  [  i    l     -     1  ]     !=     -  1     &&     dp  [  i     +     p2  [  l     -     1  ]  l     -     1  ]     !=     -  1  )      dp  [  i    l  ]     =     (  depthArr  [  dp  [  i    l     -     1  ]]     >     depthArr  [  dp  [  i     +     p2  [  l     -     1  ]  l     -     1  ]])     ?     dp  [  i     +     p2  [  l     -     1  ]  l     -     1  ]     :     dp  [  i    l     -     1  ];      else      break  ;      }          static     int     query  (  int     l       int     r  )         {      int     d     =     r     -     l  ;      int     dx     =     logn  [  d  ];          if     (  l     ==     r  )      return     l  ;          if     (  depthArr  [  dp  [  l    dx  ]]     >     depthArr  [  dp  [  r     -     p2  [  dx  ]  dx  ]])      return     dp  [  r     -     p2  [  dx  ]  dx  ];      else      return     dp  [  l    dx  ];      }          static     void     preprocess  ()         {      // Memorizing powers of 2      p2  [  0  ]     =     1  ;      for  (  int     i     =     1  ;     i      <     18  ;     i  ++  )      p2  [  i  ]     =     p2  [  i     -     1  ]     *     2  ;          // Memorizing all log(n) values      int     val     =     1       ptr     =     0  ;      for  (  int     i     =     1  ;     i      <     sz  ;     i  ++  )         {      logn  [  i  ]     =     ptr     -     1  ;      if     (  val     ==     i  )         {      val     *=     2  ;      logn  [  i  ]     =     ptr  ;      ptr  ++  ;      }      }      }          // Euler Walk ( preorder traversal) converting      // tree to linear depthArray       // Time Complexity : O(n)      static     void     dfs  (  int     cur       int     prev       int     dep  )      {      // Marking FAI for cur node      if     (  FAI  [  cur  ]     ==     -  1  )      FAI  [  cur  ]     =     ptr  ;          level  [  cur  ]     =     dep  ;          // Pushing root to euler walk      euler  .  Add  (  cur  );          // Incrementing euler walk pointer      ptr  ++  ;          foreach     (  int     x     in     adj  [  cur  ])      {      if     (  x     !=     prev  )      {      dfs  (  x       cur       dep     +     1  );          euler  .  Add  (  cur  );          ptr  ++  ;      }      }      }          // Create Level depthArray corresponding      // to the Euler walk Array      static     void     makeArr  ()      {      foreach     (  int     x     in     euler  )      depthArr  .  Add  (  level  [  x  ]);      }          static     int     LCA  (  int     u       int     v  )         {      // Trivial case      if     (  u     ==     v  )      return     u  ;          if     (  FAI  [  u  ]     >     FAI  [  v  ])      {      int     temp     =     u  ;      u     =     v  ;      v     =     temp  ;      }          // Doing RMQ in the required range      return     euler  [  query  (  FAI  [  u  ]     FAI  [  v  ])];      }          static     void     addEdge  (  int     u       int     v  )      {      adj  [  u  ].  Add  (  v  );      adj  [  v  ].  Add  (  u  );      }      // Driver Code      static     void     Main  (  string  []     args  )      {      int     sz     =     9  ;      adj     =     new     List   <  int  >  [  sz  ];      for     (  int     i     =     0  ;     i      <     sz  ;     i  ++  )      {      adj  [  i  ]     =     new     List   <  int  >  ();      }      // Constructing the described tree      int     numberOfNodes     =     8  ;      addEdge  (  1       2  );      addEdge  (  1       3  );      addEdge  (  2       4  );      addEdge  (  2       5  );      addEdge  (  2       6  );      addEdge  (  3       7  );      addEdge  (  3       8  );      // Performing required precalculations      preprocess  ();      // Doing the Euler walk      ptr     =     0  ;      Array  .  Fill  (  FAI       -  1  );      dfs  (  1       0       0  );      // Creating depthArray corresponding to euler[]      makeArr  ();      // Building sparse table      buildSparseTable  (  depthArr  .  Count  );      Console  .  WriteLine  (  'LCA(67) : '     +     LCA  (  6       7  ));      Console  .  WriteLine  (  'LCA(64) : '     +     LCA  (  6       4  ));      }       }   // This code is contributed by Prince Kumar   
JavaScript
   let     adj     =     [];   for     (  let     _     =     0  ;     _      <     101  ;     _  ++  )     {      adj  .  push  ([]);   }   // tracks the eulerwalk   let     euler     =     [];   // depth for each node corresponding to eulerwalk   let     depthArr     =     [];   // stores first appearance index of every node   let     FAI     =     new     Array  (  101  ).  fill  (  -  1  );   // stores depth for all nodes in the tree   let     level     =     new     Array  (  101  ).  fill  (  0  );   // pointer to euler walk   let     ptr     =     0  ;   // sparse table   let     dp     =     [];   for     (  let     _     =     0  ;     _      <     101  ;     _  ++  )     {      dp  .  push  (  new     Array  (  18  ).  fill  (  -  1  ));   }   // stores log values   let     logn     =     new     Array  (  101  ).  fill  (  0  );   // stores power of 2   let     p2     =     new     Array  (  20  ).  fill  (  0  );   function     buildSparseTable  (  n  )   {      // initializing sparse table      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      dp  [  i  ][  0  ]     =     i     -     1     >=     0     &&     depthArr  [  i  ]     >     depthArr  [  i     -     1  ]     ?     i     -     1     :     i  ;      }      // dp to fill sparse table      for     (  let     l     =     1  ;     l      <     15  ;     l  ++  )     {      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      if     (      dp  [  i  ][  l     -     1  ]     !==     -  1     &&      dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]     !==     -  1      )     {      dp  [  i  ][  l  ]     =      depthArr  [  dp  [  i  ][  l     -     1  ]]     >      depthArr  [  dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]]      ?     dp  [  i     +     p2  [  l     -     1  ]][  l     -     1  ]      :     dp  [  i  ][  l     -     1  ];      }     else     {      break  ;      }      }      }   }   function     query  (  l       r  )     {      let     d     =     r     -     l  ;      let     dx     =     logn  [  d  ];      if     (  l     ===     r  )     {      return     l  ;      }      if     (  depthArr  [  dp  [  l  ][  dx  ]]     >     depthArr  [  dp  [  r     -     p2  [  dx  ]][  dx  ]])     {      return     dp  [  r     -     p2  [  dx  ]][  dx  ];      }     else     {      return     dp  [  l  ][  dx  ];      }   }   function     preprocess  ()     {      // memorizing powers of 2      p2  [  0  ]     =     1  ;      for     (  let     i     =     1  ;     i      <     18  ;     i  ++  )     {      p2  [  i  ]     =     p2  [  i     -     1  ]     *     2  ;      }      // memorizing all log(n) values      let     val     =     1  ;      ptr     =     0  ;      for     (  let     i     =     1  ;     i      <     101  ;     i  ++  )     {      logn  [  i  ]     =     ptr     -     1  ;      if     (  val     ===     i  )     {      val     *=     2  ;      logn  [  i  ]     =     ptr  ;      ptr     +=     1  ;      }      }   }   function     dfs  (  cur       prev       dep  )     {      // marking FAI for cur node      if     (  FAI  [  cur  ]     ===     -  1  )     {      FAI  [  cur  ]     =     ptr  ;      }      level  [  cur  ]     =     dep  ;      // pushing root to euler walk      euler  .  push  (  cur  );      // incrementing euler walk pointer      ptr     +=     1  ;      for     (  let     x     of     adj  [  cur  ])     {      if     (  x     !==     prev  )     {      dfs  (  x       cur       dep     +     1  );      // pushing cur again in backtrack      // of euler walk      euler  .  push  (  cur  );      // increment euler walk pointer      ptr     +=     1  ;      }      }   }   // Create Level depthArray corresponding   // to the Euler walk Array   function     makeArr  ()     {      for     (  let     x     of     euler  )     {      depthArr  .  push  (  level  [  x  ]);      }   }   function     LCA  (  u       v  )     {      // trivial case      if     (  u     ===     v  )     {      return     u  ;      }      if     (  FAI  [  u  ]     >     FAI  [  v  ])     {      [  u       v  ]     =     [  v       u  ];      }      // doing RMQ in the required range      return     euler  [  query  (  FAI  [  u  ]     FAI  [  v  ])];   }   function     addEdge  (  u       v  )     {      adj  [  u  ].  push  (  v  );      adj  [  v  ].  push  (  u  );   }   // constructing the described tree   let     numberOfNodes     =     8  ;   addEdge  (  1       2  );   addEdge  (  1       3  );   addEdge  (  2       4  );   addEdge  (  2       5  );   addEdge  (  2       6  );   addEdge  (  3       7  );   addEdge  (  3       8  );   // performing required precalculations   preprocess  ();   // doing the Euler walk   ptr     =     0  ;   FAI     =     new     Array  (  numberOfNodes     +     1  ).  fill  (  -  1  );   dfs  (  1       0       0  );   // creating depthArray corresponding to euler[]   makeArr  ();   // building sparse table   buildSparseTable  (  depthArr  .  length  );   console  .  log  (  'LCA(67) : '       LCA  (  6       7  ));   console  .  log  (  'LCA(64) : '       LCA  (  6       4  ));   

Uitvoer
LCA(67) : 1 LCA(64) : 2 

Opmerking : We berekenen vooraf alle vereiste machten van 2 en berekenen ook alle vereiste logwaarden vooraf om een ​​constante tijdscomplexiteit per query te garanderen. Anders zou onze tijdcomplexiteit niet constant zijn geweest als we voor elke querybewerking een logboek hadden berekend.

Tijdcomplexiteit: Het conversieproces van LCA naar RMQ wordt gedaan door Euler Walk Op) tijd. 
Voorverwerking voor de sparse tabel in RMQ kost O(nlogn) tijd en het beantwoorden van elke query is een constant tijdproces. Daarom is de algehele tijdcomplexiteit O(nlogn) - voorverwerking en O(1) voor elke vraag.

Hulpruimte: O(n+s)

 

Quiz maken