Segments minimum dans un affichage à sept segments

Segments minimum dans un affichage à sept segments

Un affichage à sept segments peut être utilisé pour afficher des chiffres. Étant donné un éventail de n nombres naturels. La tâche consiste à trouver le nombre dans le tableau qui utilise le nombre minimum de segments pour afficher le nombre. Si plusieurs nombres ont un nombre minimum de segments, le nombre ayant le plus petit index est affiché.

Affichage à sept segments

Exemples :   

Saisir : arr[] = { 1 2 3 4 5 }.
Sortir : 1
Explication: L'élément qui utilise le nombre minimum de segments est 1 (c'est-à-dire 2 segments)

Saisir : arr[] = { 489 206 745 123 756 }.
Sortir : 745
Explication: L'élément avec le plus petit indice qui utilise le nombre minimum de segments est 745 (soit 12 segments)

L'idée est de précalculer le nombre de segments utilisés par les chiffres de 0 à 9 et de le stocker. Maintenant, pour chaque élément du tableau, additionnez le nombre de segments utilisés par chaque chiffre. Recherchez ensuite l’élément qui utilise le nombre minimum de segments.

Le nombre de segments utilisés par chiffre : 
0 -> 6 
1 -> 2 
2 -> 5 
3 -> 5 
4 -> 4 
5 -> 5 
6 -> 6 
7 -> 3 
8 -> 7 
9 -> 6

C++
   #include       using     namespace     std  ;   // Precomputed values of segment used by digit 0 to 9.   const     int     seg  [  10  ]     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x  )      {      count     +=     seg  [  x  %  10  ];      x     /=     10  ;      }      return     count  ;   }   int     elementMinSegment  (  vector   <  int  >     arr       int     n  )   {      // Initialising the minimum segment and minimum      // number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   int     main  ()   {      vector   <  int  >     arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  size  ();         cout      < <     elementMinSegment  (  arr       n  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.io.*  ;   class   GFG     {       // Precomputed values of segment    // used by digit 0 to 9.   static     int     []  seg     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ]  ;      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ]  ;      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment       // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]  );      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]  );      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ]  ;   }      static     public     void     main     (  String  []     args  )      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  elementMinSegment  (  arr       n  ));      }   }   
Python
   # Precomputed values of segment   # used by digit 0 to 9.   seg   =   [  6     2     5     5     4     5     6     3     7     6  ]   # Return the number of   # segments used by x.   def   computeSegment  (  x  ):   if  (  x   ==   0  ):   return   seg  [  0  ]   count   =   0   # Finding sum of the segment    # used by each digit of a number.   while  (  x  ):   count   +=   seg  [  x   %   10  ]   x   =   x   //   10   return   count   # function to return minimum sum index   def   elementMinSegment  (  arr     n  ):   # Initialising the minimum    # segment and minimum number index.   minseg   =   computeSegment  (  arr  [  0  ])   minindex   =   0   # Finding and comparing segment   # used by each number arr[i].   for   i   in   range  (  1     n  ):   temp   =   computeSegment  (  arr  [  i  ])   # If arr[i] used less segment   # then update minimum segment   # and minimum number.   if  (  temp    <   minseg  ):   minseg   =   temp   minindex   =   i   return   arr  [  minindex  ]   # Driver Code   arr   =   [  489     206     745     123     756  ]   n   =   len  (  arr  )   # function print required answer   print  (  elementMinSegment  (  arr     n  ))   # This code is contributed by   # Sanjit_Prasad   
C#
   using     System  ;   class     GFG  {       // Precomputed values of segment   // used by digit 0 to 9.   static     int     []  seg     =     new     int  [  10  ]{     6       2       5       5       4        5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment      // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }      static     public     void     Main  ()      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  elementMinSegment  (  arr       n  ));      }   }   
JavaScript
   // Precomputed values of segment   // used by digit 0 to 9.   let     seg     =     [     6       2       5       5       4       5       6       3       7       6  ];   // Return the number of segments used by x.   function     computeSegment  (  x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      let     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     =     parseInt  (  x     /     10       10  );      }      return     count  ;   }   function     elementMinSegment  (  arr       n  )   {          // Initialising the minimum segment      // and minimum number index.      let     minseg     =     computeSegment  (  arr  [  0  ]);      let     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for  (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      let     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   // Driver code   let     arr     =     [     489       206       745       123       756     ];   let     n     =     arr  .  length  ;   console  .  log  (  elementMinSegment  (  arr       n  ));   

Sortir
745 

Complexité temporelle : O(n * log 10 n)
Espace auxiliaire : O(10)

Créer un quiz