Visu apakškopu vidējā summa

Visu apakškopu vidējā summa
Izmēģiniet to GfG Practice #practiceLinkDiv { display: none !important; }

Ņemot vērā N veselu skaitļu elementu masīvu arr[], uzdevums ir atrast visu šī masīva apakškopu vidējo summu.

Piemērs:   

 Input : arr[] = [2 3 5]   
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33 Recommended Practice Visu apakškopu vidējā summa Izmēģiniet to!

Naiva pieeja: Naivs risinājums ir atkārtot visas iespējamās apakškopas, lai iegūtu an vidēji no tiem visiem un pēc tam pievienojiet tos pa vienam, taču tas prasīs eksponenciālu laiku un būs neiespējami lielākiem masīviem. 
Mēs varam iegūt modeli, ņemot piemēru  

 arr = [a0 a1 a2 a3]   
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Koeficientu ar skaitītājiem var izskaidrot šādi, pieņemot, ka mēs atkārtojam apakškopas ar K elementiem, tad saucējs būs K un skaitītājs r*S, kur “r” norāda, cik reižu konkrēts masīva elements tiks pievienots, atkārtojot tāda paša izmēra apakškopas. Pārbaudot, mēs varam redzēt, ka r būs nCr(N - 1 n - 1), jo pēc viena elementa ievietošanas summācijā ir jāizvēlas (n - 1) elementi no (N - 1) elementiem, lai katram elementam būtu nCr(N - 1 n - 1) frekvence, vienlaikus ņemot vērā tāda paša izmēra apakškopas, jo visi elementi piedalās reižu laikā, un šī summēšanas frekvence būs vienāda ar S reižu skaitu. izteiksme. 

Zemāk esošajā kodā nCr tiek realizēts, izmantojot dinamiskās programmēšanas metodi vairāk par to varat lasīt šeit 

C++
   // C++ program to get sum of average of all subsets   #include          using     namespace     std  ;   // Returns value of Binomial Coefficient C(n k)   int     nCr  (  int     n       int     k  )   {      int     C  [  n     +     1  ][  k     +     1  ];      int     i       j  ;      // Calculate value of Binomial Coefficient in bottom      // up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using previously stored      // values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];   }   // method returns sum of average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;     // Initialize result      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   // java program to get sum of   // average of all subsets   import     java.io.*  ;   class   GFG     {      // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int     C  [][]     =     new     int  [  n     +     1  ][  k     +     1  ]  ;      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ]  ;      }      }      return     C  [  n  ][  k  ]  ;      }      // method returns sum of average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     2       3       5       7     };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by vt_m   
C#
   // C# program to get sum of   // average of all subsets   using     System  ;   class     GFG     {          // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int  [     ]     C     =     new     int  [  n     +     1       k     +     1  ];      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  Min  (  i       k  );     j  ++  )         {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i       j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i       j  ]     =     C  [  i     -     1       j     -     1  ]     +     C  [  i     -     1       j  ];      }      }      return     C  [  n       k  ];      }      // method returns sum of average       // of all subsets      static     double     resultOfAllSubsets  (  int  []     arr       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset       // of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by Sam007   
JavaScript
    <  script  >      // javascript program to get sum of      // average of all subsets          // Returns value of Binomial      // Coefficient C(n k)      function     nCr  (  n       k  )      {      let     C     =     new     Array  (  n     +     1  );      for     (  let     i     =     0  ;     i      <=     n  ;     i  ++  )         {      C  [  i  ]     =     new     Array  (  k     +     1  );      for     (  let     j     =     0  ;     j      <=     k  ;     j  ++  )         {      C  [  i  ][  j  ]     =     0  ;      }      }      let     i       j  ;          // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;          // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];      }          // method returns sum of average of all subsets      function     resultOfAllSubsets  (  arr       N  )      {      // Initialize result      let     result     =     0.0  ;          // Find sum of elements      let     sum     =     0  ;      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];          // looping once for all subset of same size      for     (  let     n     =     1  ;     n      <=     N  ;     n  ++  )          /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;          return     result  ;      }          let     arr     =     [     2       3       5       7     ];      let     N     =     arr  .  length  ;      document  .  write  (  resultOfAllSubsets  (  arr       N  ));        <  /script>   
PHP
      // PHP program to get sum    // of average of all subsets   // Returns value of Binomial   // Coefficient C(n k)   function   nCr  (  $n     $k  )   {   $C  [  $n   +   1  ][  $k   +   1  ]   =   0  ;   $i  ;   $j  ;   // Calculate value of Binomial   // Coefficient in bottom up manner   for   (  $i   =   0  ;   $i    <=   $n  ;   $i  ++  )   {   for   (  $j   =   0  ;   $j    <=   min  (  $i     $k  );   $j  ++  )   {   // Base Cases   if   (  $j   ==   0   ||   $j   ==   $i  )   $C  [  $i  ][  $j  ]   =   1  ;   // Calculate value using    // previously stored values   else   $C  [  $i  ][  $j  ]   =   $C  [  $i   -   1  ][  $j   -   1  ]   +   $C  [  $i   -   1  ][  $j  ];   }   }   return   $C  [  $n  ][  $k  ];   }   // method returns sum of   // average of all subsets   function   resultOfAllSubsets  (  $arr     $N  )   {   // Initialize result   $result   =   0.0  ;   // Find sum of elements   $sum   =   0  ;   for   (  $i   =   0  ;   $i    <   $N  ;   $i  ++  )   $sum   +=   $arr  [  $i  ];   // looping once for all    // subset of same size   for   (  $n   =   1  ;   $n    <=   $N  ;   $n  ++  )   /* each element occurs nCr(N-1     n-1) times while considering     subset of size n */   $result   +=   ((  $sum   *   (  nCr  (  $N   -   1     $n   -   1  )))   /   $n  );   return   $result  ;   }   // Driver Code   $arr   =   array  (   2     3     5     7   );   $N   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   resultOfAllSubsets  (  $arr     $N  )   ;   // This code is contributed by nitin mittal.    ?>   
Python3
   # Python3 program to get sum   # of average of all subsets   # Returns value of Binomial   # Coefficient C(n k)   def   nCr  (  n     k  ):   C   =   [[  0   for   i   in   range  (  k   +   1  )]   for   j   in   range  (  n   +   1  )]   # Calculate value of Binomial    # Coefficient in bottom up manner   for   i   in   range  (  n   +   1  ):   for   j   in   range  (  min  (  i     k  )   +   1  ):   # Base Cases   if   (  j   ==   0   or   j   ==   i  ):   C  [  i  ][  j  ]   =   1   # Calculate value using    # previously stored values   else  :   C  [  i  ][  j  ]   =   C  [  i  -  1  ][  j  -  1  ]   +   C  [  i  -  1  ][  j  ]   return   C  [  n  ][  k  ]   # Method returns sum of   # average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   # Initialize result   # Find sum of elements   sum   =   0   for   i   in   range  (  N  ):   sum   +=   arr  [  i  ]   # looping once for all subset of same size   for   n   in   range  (  1     N   +   1  ):   # each element occurs nCr(N-1 n-1) times while   # considering subset of size n */   result   +=   (  sum   *   (  nCr  (  N   -   1     n   -   1  )))   /   n   return   result   # Driver code    arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   # This code is contributed by Anant Agarwal.   

Izvade
63.75 

Laika sarežģītība: O(n 3 )
Palīgtelpa: O(n 2 )

Efektīva pieeja: kosmosa optimizācija O(1)
Lai optimizētu iepriekš minētās pieejas telpas sarežģītību, mēs varam izmantot efektīvāku pieeju, kas novērš nepieciešamību pēc visas matricas C[][] lai saglabātu binomiālos koeficientus. Tā vietā mēs varam izmantot kombinēto formulu, lai vajadzības gadījumā tieši aprēķinātu binomiālo koeficientu.

Ieviešanas soļi:

  • Atkārtojiet masīva elementus un aprēķiniet visu elementu summu.
  • Atkārtojiet katru apakškopas lielumu no 1 līdz N.
  • Aprēķiniet cilpas iekšpusē vidēji no elementu summas, kas reizināta ar apakškopas lieluma binomiālo koeficientu. Pievienojiet rezultātam aprēķināto vidējo.
  • Atgriezt gala rezultātu.

Īstenošana:

C++
   #include          using     namespace     std  ;   // Method to calculate binomial coefficient C(n k)   int     binomialCoeff  (  int     n       int     k  )   {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Method to calculate the sum of the average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;   }   // Driver code to test the above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // Method to calculate binomial coefficient C(n k)      static     int     binomialCoeff  (  int     n       int     k  )     {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )     {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )     (  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     main  (  String  []     args  )     {      int     arr  []     =     {  2       3       5       7  };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   
C#
   using     System  ;   public     class     MainClass   {      // Method to calculate binomial coefficient C(n k)      static     int     BinomialCoeff  (  int     n       int     k  )      {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     ResultOfAllSubsets  (  int  []     arr       int     N  )      {      double     result     =     0.0  ;      int     sumVal     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sumVal     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sumVal     *     BinomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  ResultOfAllSubsets  (  arr       N  ));      }   }   
JavaScript
   // Function to calculate binomial coefficient C(n k)   function     binomialCoeff  (  n       k  )     {      let     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Function to calculate the sum of the average of all subsets   function     resultOfAllSubsets  (  arr  )     {      let     result     =     0.0  ;      let     sum     =     arr  .  reduce  ((  acc       val  )     =>     acc     +     val       0  );      // Loop for each subset size      for     (  let     n     =     1  ;     n      <=     arr  .  length  ;     n  ++  )     {      result     +=     (  sum     *     binomialCoeff  (  arr  .  length     -     1       n     -     1  ))     /     n  ;      }      return     result  ;   }   const     arr     =     [  2       3       5       7  ];   console  .  log  (  resultOfAllSubsets  (  arr  ));   
Python3
   # Method to calculate binomial coefficient C(n k)   def   binomialCoeff  (  n     k  ):   res   =   1   # Since C(n k) = C(n n-k)   if   k   >   n   -   k  :   k   =   n   -   k   # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]   for   i   in   range  (  k  ):   res   *=   (  n   -   i  )   res   //=   (  i   +   1  )   return   res   # Method to calculate the sum of the average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   sum_val   =   0   # Calculate the sum of elements   for   i   in   range  (  N  ):   sum_val   +=   arr  [  i  ]   # Loop for each subset size   for   n   in   range  (  1     N   +   1  ):   result   +=   (  sum_val   *   binomialCoeff  (  N   -   1     n   -   1  ))   /   n   return   result   # Driver code to test the above methods   arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   


Izvade

 63.75  

Laika sarežģītība: O(n^2)
Palīgtelpa: O(1)



 

Izveidojiet viktorīnu