Minimālie soļi, lai bruņinieks sasniegtu mērķi | 2. komplekts

Minimālie soļi, lai bruņinieks sasniegtu mērķi | 2. komplekts

Ja ir dots N x N izmēra kvadrātveida šaha galdiņš, bruņinieka pozīcijai un mērķa pozīcijai ir dots uzdevums noskaidrot minimālos soļus, ko bruņinieks veiks, lai sasniegtu mērķa pozīciju.
 

Minimālie soļi, lai bruņinieks sasniegtu mērķi | 2. komplekts


Piemēri: 
 

Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3 


 


BFS pieeja iepriekš minētās problēmas risināšanai jau ir apspriesta iepriekšējā pastu. Šajā ierakstā tiek apspriests dinamiskās programmēšanas risinājums.
Pieejas skaidrojums:  
 

    1. gadījums: Ja mērķis nav pa vienu bruņinieka pozīcijas rindu vai kolonnu. 
    Ļaujiet šaha galdiņam 8 x 8 šūnu. Tagad pieņemsim, ka bruņinieks atrodas (3 3) un mērķis ir (7 8). Ir iespējamas 8 kustības no pašreizējās bruņinieka pozīcijas, t.i. (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Bet no šiem tikai divi gājieni (5 4) un (4 5) būs mērķa virzienā, un viss pārējais virzās prom no mērķa. Tātad, lai atrastu minimālos soļus, dodieties uz (4 5) vai (5 4). Tagad aprēķiniet minimālos soļus no (4 5) un (5 4), lai sasniegtu mērķi. To aprēķina, izmantojot dinamisko programmēšanu. Tādējādi tiek veikti minimālie soļi no (3 3) līdz (7 8). 2. gadījums: Ja mērķis atrodas gar vienu bruņinieka pozīcijas rindu vai kolonnu. 
    Ļaujiet šaha galdiņam 8 x 8 šūnu. Tagad pieņemsim, ka bruņinieks atrodas (4 3) un mērķis ir (4 7). Ir iespējamas 8 kustības, bet mērķa virzienā ir tikai 4 kustības, t.i. (5 5) (3 5) (2 4) (6 4). Tā kā (5 5) ir ekvivalents (3 5) un (2 4) ir līdzvērtīgs (6 4). Tātad no šiem 4 punktiem to var pārvērst 2 punktos. Ņemot (5 5) un (6 4) (šeit). Tagad aprēķiniet minimālos soļus no šiem diviem punktiem, lai sasniegtu mērķi. To aprēķina, izmantojot dinamisko programmēšanu. Tādējādi tiek veikti minimālie soļi no (4 3) līdz (4 7).


Izņēmums: Kad bruņinieks būs stūrī un mērķis ir tāds, ka x un y koordinātu atšķirība ar bruņinieka pozīciju ir (1 1) vai otrādi. Tad minimālais soļu skaits būs 4.
Dinamiskās programmēšanas vienādojums: 
 

1) dp[diffOfX][diffOfY] ir minimālie soļi, kas veikti no bruņinieka pozīcijas līdz mērķa pozīcijai.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
kur diffOfX = atšķirība starp bruņinieka x-koordinātu un mērķa x-koordinātu 
diffOfY = atšķirība starp bruņinieka y-koordinātu un mērķa y-koordinātu 
 


Tālāk ir aprakstīta iepriekš minētās pieejas īstenošana: 
 

C++
   // C++ code for minimum steps for   // a knight to reach target position   #include          using     namespace     std  ;   // initializing the matrix.   int     dp  [  8  ][  8  ]     =     {     0     };   int     getsteps  (  int     x       int     y           int     tx       int     ty  )   {      // if knight is on the target       // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     !=     0  )      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      int     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).      dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     =         min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [  abs  (  y     -     ty  )][  abs  (  x     -     tx  )]     =         dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      }      }   }   // Driver Code   int     main  ()   {      int     i       n       x       y       tx       ty       ans  ;          // size of chess board n*n      n     =     100  ;          // (x y) coordinate of the knight.      // (tx ty) coordinate of the target position.      x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.      if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||         (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||         (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||         (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;      else     {      // dp[a][b] here a b is the difference of      // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      cout      < <     ans      < <     endl  ;      return     0  ;   }   
Java
   //Java code for minimum steps for    // a knight to reach target position    public     class   GFG     {   // initializing the matrix.       static     int     dp  [][]     =     new     int  [  8  ][  8  ]  ;      static     int     getsteps  (  int     x       int     y        int     tx       int     ty  )     {      // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {      return     dp  [  0  ][  0  ]  ;      }     else     // if already calculated then return       // that value. Taking absolute difference.       if     (  dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]     !=     0  )     {      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }     else     {      // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;      // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]      =     Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;      // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .  abs  (  y     -     ty  )  ][     Math  .  abs  (  x     -     tx  )  ]      =     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }      }   // Driver Code       static     public     void     main  (  String  []     args  )     {      int     i       n       x       y       tx       ty       ans  ;      // size of chess board n*n       n     =     100  ;      // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )      ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )      ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )      ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )      ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     {      // dp[a][b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      System  .  out  .  println  (  ans  );      }   }   /*This code is contributed by PrinciRaj1992*/   
Python3
   # Python3 code for minimum steps for   # a knight to reach target position   # initializing the matrix.   dp   =   [[  0   for   i   in   range  (  8  )]   for   j   in   range  (  8  )];   def   getsteps  (  x     y     tx     ty  ):   # if knight is on the target   # position return 0.   if   (  x   ==   tx   and   y   ==   ty  ):   return   dp  [  0  ][  0  ];   # if already calculated then return   # that value. Taking absolute difference.   elif  (  dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   !=   0  ):   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   else  :   # there will be two distinct positions   # from the knight towards a target.   # if the target is in same row or column   # as of knight then there can be four   # positions towards the target but in that   # two would be the same and the other two   # would be the same.   x1     y1     x2     y2   =   0     0     0     0  ;   # (x1 y1) and (x2 y2) are two positions.   # these can be different according to situation.   # From position of knight the chess board can be   # divided into four blocks i.e.. N-E E-S S-W W-N .   if   (  x    <=   tx  ):   if   (  y    <=   ty  ):   x1   =   x   +   2  ;   y1   =   y   +   1  ;   x2   =   x   +   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   +   2  ;   y1   =   y   -   1  ;   x2   =   x   +   1  ;   y2   =   y   -   2  ;   elif   (  y    <=   ty  ):   x1   =   x   -   2  ;   y1   =   y   +   1  ;   x2   =   x   -   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   -   2  ;   y1   =   y   -   1  ;   x2   =   x   -   1  ;   y2   =   y   -   2  ;   # ans will be 1 + minimum of steps   # required from (x1 y1) and (x2 y2).   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   =    min  (  getsteps  (  x1     y1     tx     ty  )   getsteps  (  x2     y2     tx     ty  ))   +   1  ;   # exchanging the coordinates x with y of both   # knight and target will result in same ans.   dp  [  abs  (  y   -   ty  )][  abs  (  x   -   tx  )]   =    dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   # Driver Code   if   __name__   ==   '__main__'  :   # size of chess board n*n   n   =   100  ;   # (x y) coordinate of the knight.   # (tx ty) coordinate of the target position.   x   =   4  ;   y   =   5  ;   tx   =   1  ;   ty   =   1  ;   # (Exception) these are the four corner points   # for which the minimum steps is 4.   if   ((  x   ==   1   and   y   ==   1   and   tx   ==   2   and   ty   ==   2  )   or   (  x   ==   2   and   y   ==   2   and   tx   ==   1   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   1   and   y   ==   n   and   tx   ==   2   and   ty   ==   n   -   1  )   or   (  x   ==   2   and   y   ==   n   -   1   and   tx   ==   1   and   ty   ==   n  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   1   and   tx   ==   n   -   1   and   ty   ==   2  )   or   (  x   ==   n   -   1   and   y   ==   2   and   tx   ==   n   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   n   and   tx   ==   n   -   1   and   ty   ==   n   -   1  )   or   (  x   ==   n   -   1   and   y   ==   n   -   1   and   tx   ==   n   and   ty   ==   n  )):   ans   =   4  ;   else  :   # dp[a][b] here a b is the difference of   # x & tx and y & ty respectively.   dp  [  1  ][  0  ]   =   3  ;   dp  [  0  ][  1  ]   =   3  ;   dp  [  1  ][  1  ]   =   2  ;   dp  [  2  ][  0  ]   =   2  ;   dp  [  0  ][  2  ]   =   2  ;   dp  [  2  ][  1  ]   =   1  ;   dp  [  1  ][  2  ]   =   1  ;   ans   =   getsteps  (  x     y     tx     ty  );   print  (  ans  );   # This code is contributed by PrinciRaj1992   
C#
   // C# code for minimum steps for    // a knight to reach target position    using     System  ;   public     class     GFG  {   // initializing the matrix.       static     int     [          ]  dp     =     new     int  [  8          8  ];         static     int     getsteps  (  int     x       int     y           int     tx       int     ty  )     {         // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {         return     dp  [  0          0  ];         }     else     // if already calculated then return       // that value. Taking Absolute difference.       if     (  dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]     !=     0  )     {         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }     else     {         // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;         // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {         if     (  y      <=     ty  )     {         x1     =     x     +     2  ;         y1     =     y     +     1  ;         x2     =     x     +     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     +     2  ;         y1     =     y     -     1  ;         x2     =     x     +     1  ;         y2     =     y     -     2  ;         }         }     else     if     (  y      <=     ty  )     {         x1     =     x     -     2  ;         y1     =     y     +     1  ;         x2     =     x     -     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     -     2  ;         y1     =     y     -     1  ;         x2     =     x     -     1  ;         y2     =     y     -     2  ;         }         // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]         =     Math  .  Min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;         // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .     Abs  (  y     -     ty  )          Math  .     Abs  (  x     -     tx  )]         =     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }         }      // Driver Code       static     public     void     Main  ()     {         int     i       n       x       y       tx       ty       ans  ;         // size of chess board n*n       n     =     100  ;         // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;         y     =     5  ;         tx     =     1  ;         ty     =     1  ;         // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )         ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )         ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )         ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )         ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     {         // dp[a  b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1          0  ]     =     3  ;         dp  [  0          1  ]     =     3  ;         dp  [  1          1  ]     =     2  ;         dp  [  2          0  ]     =     2  ;         dp  [  0          2  ]     =     2  ;         dp  [  2          1  ]     =     1  ;         dp  [  1          2  ]     =     1  ;         ans     =     getsteps  (  x       y       tx       ty  );         }         Console  .  WriteLine  (  ans  );         }      }      /*This code is contributed by PrinciRaj1992*/   
JavaScript
    <  script  >   // JavaScript code for minimum steps for   // a knight to reach target position   // initializing the matrix.   let     dp     =     new     Array  (  8  )   for  (  let     i  =  0  ;  i   <  8  ;  i  ++  ){      dp  [  i  ]     =     new     Array  (  8  ).  fill  (  0  )   }   function     getsteps  (  x    y    tx    ty  )   {      // if knight is on the target      // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     !=     0  )      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      let     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps      // required from (x1 y1) and (x2 y2).      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     =      Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [(  Math  .  abs  (  y     -     ty  ))][(  Math  .  abs  (  x     -     tx  ))]     =      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      }      }   }   // Driver Code   let     i       n       x       y       tx       ty       ans  ;   // size of chess board n*n   n     =     100  ;   // (x y) coordinate of the knight.   // (tx ty) coordinate of the target position.   x     =     4  ;   y     =     5  ;   tx     =     1  ;   ty     =     1  ;   // (Exception) these are the four corner points   // for which the minimum steps is 4.   if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||   (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||      (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||      (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;   else      {   // dp[a][b] here a b is the difference of   // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );   }   document  .  write  (  ans    ' 
'
); // This code is contributed by shinjanpatra. < /script>

Izvade:  
3 

 

Laika sarežģītība: O(N * M), kur N ir kopējais rindu skaits un M ir kopējais kolonnu skaits
Palīgtelpa: O(N*M) 

Izveidojiet viktorīnu