Maksimālais trīsstūra laukums ar dažādām virsotņu krāsām

Maksimālais trīsstūra laukums ar dažādām virsotņu krāsām

Dota matrica no N rindas un M kolonnas sastāv no trim vērtībām {r g b}. Uzdevums ir atrast laukumu lielākajam trīsstūrim, kura viena mala ir paralēla y asij, t.i., vertikāla, un visu trīs virsotņu krāsa ir atšķirīga.
Piemēri:  
 

    Input :      N = 4 M =5   
mat[][] =
{
r r r r r
r r r r g
r r r r r
b b b b b
}
Output : 10
The maximum area of triangle is 10.
Triangle coordinates are (00) containing r (14) containing g (30) containing b.

Maksimālais trīsstūra laukums ar dažādām virsotņu krāsām

    

Mēs zinām trīsstūra laukumu = 1/2 * bāze * augstums, tāpēc mums ir jāpalielina trīsstūra pamatne un augstums. Tā kā viena mala ir paralēla y asij, mēs to varam uzskatīt par trijstūra pamatu.
Lai palielinātu bāzi, katrai kolonnai varam atrast pirmo un pēdējo {r g b} gadījumu. Tātad katrai kolonnai ir divas 3 vērtību kopas. Jebkuras kolonnas bāzei viena virsotne ir no pirmās kopas un otrā virsotne no otrās kopas tā, ka tām ir dažādas vērtības.
Lai palielinātu jebkuras kolonnas kā pamatnes augstumu, trešā virsotne ir jāizvēlas tā, lai virsotne būtu vistālāk no kolonnas kolonnas kreisajā vai labajā pusē, kuras vērtība atšķiras no pārējām divām virsotnēm. 
Tagad katrai kolonnai atrodiet maksimālo trīsstūra laukumu.
Tālāk ir sniegta informācija par šīs pieejas īstenošanu.
 

C++
   // C++ program to find maximum area of triangle   // having different vertex color in a matrix.   #include       using     namespace     std  ;   #define R 4   #define C 5   // return the color value so that their corresponding   // index can be access.   int     mapcolor  (  char     c  )   {      if     (  c     ==     'r'  )      return     0  ;      else     if     (  c     ==     'g'  )      return     1  ;      else     if     (  c     ==     'b'  )      return     2  ;   }   // Returns the maximum area of triangle from all   // the possible triangles   double     findarea  (  char     mat  [  R  ][  C  ]     int     r       int     c        int     top  [  3  ][  C  ]     int     bottom  [  3  ][  C  ]      int     left  [  3  ]     int     right  [  3  ])   {      double     ans     =     (  double  )  1  ;      // for each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )      // for each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )      // for each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )      {      // finding the third color of      // vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     INT_MAX     &&      bottom  [  y  ][  i  ]     !=     INT_MIN     &&     left  [  z  ]     !=     INT_MAX  )      {      ans     =     max  (  ans       ((  double  )  1  /  (  double  )  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *      (  i     -     left  [  z  ]));      }      // finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     INT_MAX     &&      bottom  [  y  ][  i  ]     !=     INT_MIN     &&      right  [  z  ]     !=     INT_MIN  )      {      ans     =     max  (  ans       ((  double  )  1  /  (  double  )  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *      (  right  [  z  ]     -     i  ));      }      }      return     ans  ;   }   // Precompute the vertices of top bottom left   // and right and then computing the maximum area.   double     maxarea  (  char     mat  [  R  ][  C  ]     int     r       int     c  )   {      int     left  [  3  ]     right  [  3  ];      int     top  [  3  ][  C  ]     bottom  [  3  ][  C  ];      memset  (  left       INT_MAX       sizeof     left  );      memset  (  right       INT_MIN       sizeof     right  );      memset  (  top       INT_MAX       sizeof     top  );      memset  (  bottom       INT_MIN       sizeof     bottom  );      // finding the r b g cells for the left      // and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )      {      left  [  mapcolor  (  mat  [  i  ][  j  ])]     =      min  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]     j  );      right  [  mapcolor  (  mat  [  i  ][  j  ])]     =      max  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]     j  );      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )      {      for  (     int     i     =     0  ;     i      <     r  ;     i  ++  )      {      top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     =      min  (  top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     i  );      bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     =      max  (  bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     i  );      }      }      return     findarea  (  mat       R       C       top       bottom       left       right  );   }   // Driven Program   int     main  ()   {      char     mat  [  R  ][  C  ]     =      {      'r'       'r'       'r'       'r'       'r'        'r'       'r'       'r'       'r'       'g'        'r'       'r'       'r'       'r'       'r'        'b'       'b'       'b'       'b'       'b'        };      cout      < <     maxarea  (  mat       R       C  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      static     int     R     =     4  ;      static     int     C     =     5  ;      static     char  [][]     mat     =     {      {  'r'       'r'       'r'       'r'       'r'  }      {  'r'       'r'       'r'       'r'       'g'  }      {  'r'       'r'       'r'       'r'       'r'  }      {  'b'       'b'       'b'       'b'       'b'  }      };      public     static     void     main  (  String  []     args  )     {      System  .  out  .  println  (  maxArea  (  mat       R       C  ));      }      // Returns the color value so that their corresponding index can be accessed.      static     int     mapColor  (  char     c  )     {      if     (  c     ==     'r'  )     return     0  ;      else     if     (  c     ==     'g'  )     return     1  ;      else     if     (  c     ==     'b'  )     return     2  ;      else     return     -  1  ;      }      // Returns the maximum area of triangle from all the possible triangles      static     double     findArea  (  char  [][]     mat       int     r       int     c       int  [][]     top       int  [][]     bottom       int  []     left       int  []     right  )     {      double     ans     =     10  ;      // For each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )     {      // For each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )     {      // For each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )     {      // Finding the third color of vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // Finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Integer  .  MAX_VALUE     &&      bottom  [  y  ][  i  ]     !=     Integer  .  MIN_VALUE     &&      left  [  z  ]     !=     Integer  .  MAX_VALUE  )     {      ans     =     Math  .  max  (  ans       0.5     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ]  )     *     (  i     -     left  [  z  ]  ));      }      // Finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Integer  .  MAX_VALUE     &&      bottom  [  y  ][  i  ]     !=     Integer  .  MIN_VALUE     &&      right  [  z  ]     !=     Integer  .  MIN_VALUE  )     {      ans     =     Math  .  max  (  ans       0.5     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ]  )     *     (  right  [  z  ]     -     i  ));      }      }      }      }      return     ans  ;      }      // Precompute the vertices of top bottom left and right and then computing the maximum area.      static     double     maxArea  (  char  [][]     mat       int     r       int     c  )     {      int  []     left     =     new     int  [  3  ]  ;      Arrays  .  fill  (  left       Integer  .  MAX_VALUE  );      int  []     right     =     new     int  [  3  ]  ;      Arrays  .  fill  (  right       Integer  .  MIN_VALUE  );      int  [][]     top     =     new     int  [  3  ][  c  ]  ;      for     (  int  []     row     :     top  )     Arrays  .  fill  (  row       Integer  .  MAX_VALUE  );      int  [][]     bottom     =     new     int  [  3  ][  c  ]  ;      for     (  int  []     row     :     bottom  )     Arrays  .  fill  (  row       Integer  .  MIN_VALUE  );      // Finding the r b g cells for the left and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      int     color     =     mapColor  (  mat  [  i  ][  j  ]  );      left  [  color  ]     =     Math  .  min  (  left  [  color  ]       j  );      right  [  color  ]     =     Math  .  max  (  right  [  color  ]       j  );      }      }      // Finding set of {r g b} of top and bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      int     color     =     mapColor  (  mat  [  i  ][  j  ]  );      top  [  color  ][  j  ]     =     Math  .  min  (  top  [  color  ][  j  ]       i  );      bottom  [  color  ][  j  ]     =     Math  .  max  (  bottom  [  color  ][  j  ]       i  );      }      }      return     findArea  (  mat       r       c       top       bottom       left       right  );      }   }   
Python3
   # Python3 program to find the maximum    # area of triangle having different    # vertex color in a matrix.    # Return the color value so that their    # corresponding index can be access.    def   mapcolor  (  c  ):   if   c   ==   'r'  :   return   0   elif   c   ==   'g'  :   return   1   elif   c   ==   'b'  :   return   2   # Returns the maximum area of triangle    # from all the possible triangles    def   findarea  (  mat     r     c     top     bottom     left     right  ):   ans   =   1   # for each column    for   i   in   range  (  0     c  ):   # for each top vertex    for   x   in   range  (  0     3  ):   # for each bottom vertex    for   y   in   range  (  0     3  ):   # finding the third color of    # vertex either on right or left.    z   =   3   -   x   -   y   # finding area of triangle on    # left side of column.    if   (  x   !=   y   and   top  [  x  ][  i  ]   !=   INT_MAX   and   bottom  [  y  ][  i  ]   !=   INT_MIN   and   left  [  z  ]   !=   INT_MAX  ):   ans   =   max  (  ans     0.5   *   (  bottom  [  y  ][  i  ]   -   top  [  x  ][  i  ])   *   (  i   -   left  [  z  ]))   # finding area of triangle on right side of column.    if   (  x   !=   y   and   top  [  x  ][  i  ]   !=   INT_MAX   and   bottom  [  y  ][  i  ]   !=   INT_MIN   and   right  [  z  ]   !=   INT_MIN  ):   ans   =   max  (  ans     0.5   *   (  bottom  [  y  ][  i  ]   -   top  [  x  ][  i  ])   *   (  right  [  z  ]   -   i  ))   return   ans   # Precompute the vertices of top bottom left    # and right and then computing the maximum area.    def   maxarea  (  mat     r     c  ):   left   =   [  -  1  ]   *   3   right   =   [  0  ]   *   3   top   =   [[  -  1   for   i   in   range  (  C  )]   for   j   in   range  (  3  )]   bottom   =   [[  0   for   i   in   range  (  C  )]   for   j   in   range  (  3  )]   # finding the r b g cells for    # the left and right vertices.    for   i   in   range  (  0     r  ):   for   j   in   range  (  0     c  ):   left  [  mapcolor  (  mat  [  i  ][  j  ])]   =    min  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]   j  )   right  [  mapcolor  (  mat  [  i  ][  j  ])]   =    max  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]   j  )   # finding set of r g b of top    # and bottom for each column.    for   j   in   range  (  0     c  ):   for   i   in   range  (  0     r  ):   top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   =    min  (  top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   i  )   bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   =    max  (  bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   i  )   return   int  (  findarea  (  mat     R     C     top     bottom     left     right  ))   # Driver Code   if   __name__   ==   '__main__'  :   R     C   =   4     5   mat   =   [[  'r'     'r'     'r'     'r'     'r'  ]   [  'r'     'r'     'r'     'r'     'g'  ]   [  'r'     'r'     'r'     'r'     'r'  ]   [  'b'     'b'     'b'     'b'     'b'  ]]   INT_MAX     INT_MIN   =   float  (  'inf'  )   float  (  '-inf'  )   print  (  maxarea  (  mat     R     C  ))   # This code is contributed by Rituraj Jain   
C#
   // C# program to find maximum area of triangle   // having different vertex color in a matrix.   using     System  ;   class     MainClass     {      const     int     R     =     4  ;      const     int     C     =     5  ;      // return the color value so that their corresponding      // index can be access.      static     int     mapcolor  (  char     c  )      {      if     (  c     ==     'r'  )     {      return     0  ;      }      else     if     (  c     ==     'g'  )     {      return     1  ;      }      else     if     (  c     ==     'b'  )     {      return     2  ;      }      else     {      return     -  1  ;      }      }      // Returns the maximum area of triangle from all      // the possible triangles      static     double     findarea  (  char  [     ]     mat       int     r       int     c        int  [     ]     top       int  [     ]     bottom        int  []     left       int  []     right  )      {      double     ans     =     .  0  ;      // for each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )     {      // for each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )     {      // for each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )     {      // finding the third color of      // vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // finding area of triangle on left side      // of column.      if     (  x     !=     y      &&     top  [  x       i  ]      !=     int  .  MaxValue  &&      bottom  [  y       i  ]      !=     int  .  MinValue  &&     left  [  z  ]      !=     int  .  MaxValue  )     {      ans     =     Math  .  Max  (      ans        (  1.0     /     2.0  )      *     (  bottom  [  y       i  ]     -     top  [  x       i  ])      *     (  i     -     left  [  z  ]));      }      // finding area of triangle on right      // side of column.      if     (  x     !=     y      &&     top  [  x       i  ]      !=     int  .  MaxValue  &&      bottom  [  y       i  ]      !=     int  .  MinValue  &&     right  [  z  ]      !=     int  .  MinValue  )     {      ans     =     Math  .  Max  (      ans        (  1.0     /     2.0  )      *     (  bottom  [  y       i  ]     -     top  [  x       i  ])      *     (  right  [  z  ]     -     i  )  +  4  );      }      }      }      }      return     ans  ;      }      // Precompute the vertices of top bottom left      // and right and then computing the maximum area.      static     double     maxarea  (  char  [     ]     mat       int     r       int     c  )      {      int  []     left      =     {     int  .  MaxValue       int  .  MaxValue       int  .  MaxValue     };      int  []     right      =     {     int  .  MinValue       int  .  MinValue       int  .  MinValue     };      int  [     ]     top     =     new     int  [  3       C  ];      int  [     ]     bottom     =     new     int  [  3       C  ];      // finding the r b g cells for the left      // and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      int     color     =     mapcolor  (  mat  [  i       j  ]);      if     (  color     !=     -  1  )     {      left  [  color  ]     =     Math  .  Min  (  left  [  color  ]     j  );      right  [  color  ]      =     Math  .  Max  (  right  [  color  ]     j  );      }      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      int     color     =     mapcolor  (  mat  [  i       j  ]);      if     (  color     !=     -  1  )     {      top  [  color       j  ]      =     Math  .  Min  (  top  [  color       j  ]     i  );      bottom  [  color       j  ]      =     Math  .  Max  (  bottom  [  color       j  ]     i  );      }      }      }      return     findarea  (  mat       R       C       top       bottom       left        right  );      }      // Driven Program      public     static     void     Main  (  string  []     args  )      {      char  [     ]     mat     =     new     char  [     ]     {      {     'r'       'r'       'r'       'r'       'r'     }      {     'r'       'r'       'r'       'r'       'g'     }      {     'r'       'r'       'r'       'r'       'r'     }      {     'b'       'b'       'b'       'b'       'b'     }      };      Console  .  WriteLine  (  maxarea  (  mat       R       C  ));      }   }   
JavaScript
   // Javascript program to find maximum area of triangle   // having different vertex color in a matrix.   // return the color value so that their corresponding   // index can be accessed.   function     mapcolor  (  c  )     {      if     (  c     ==     'r'  )     return     0  ;      else     if     (  c     ==     'g'  )     return     1  ;      else     if     (  c     ==     'b'  )     return     2  ;   }   // Returns the maximum area of triangle from all   // the possible triangles   function     findarea  (  mat       r       c       top       bottom       left       right  )     {      let     ans     =     10  ;      // for each column      for     (  let     i     =     0  ;     i      <     c  ;     i  ++  )     {      // for each top vertex      for     (  let     x     =     0  ;     x      <     3  ;     x  ++  )     {      // for each bottom vertex      for     (  let     y     =     0  ;     y      <     3  ;     y  ++  )     {      // finding the third color of      // vertex either on right or left.      let     z     =     3     -     x     -     y  ;      // finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Number  .  MAX_SAFE_INTEGER     &&      bottom  [  y  ][  i  ]     !=     Number  .  MIN_SAFE_INTEGER     &&      left  [  z  ]     !=     Number  .  MAX_SAFE_INTEGER  )     {      ans     =     Math  .  max  (  ans       (  1  /  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *     (  i     -     left  [  z  ]));      }      // finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Number  .  MAX_SAFE_INTEGER     &&      bottom  [  y  ][  i  ]     !=     Number  .  MIN_SAFE_INTEGER     &&      right  [  z  ]     !=     Number  .  MIN_SAFE_INTEGER  )     {      ans     =     Math  .  max  (  ans       (  1  /  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *     (  right  [  z  ]     -     i  ));      }      }      }      }      return     ans  ;   }   // Precompute the vertices of top bottom left   // and right and then computing the maximum area.   function     maxarea  (  mat       r       c  )     {      let     left     =     [  Number  .  MAX_SAFE_INTEGER       Number  .  MAX_SAFE_INTEGER       Number  .  MAX_SAFE_INTEGER  ];      let     right     =     [  Number  .  MIN_SAFE_INTEGER       Number  .  MIN_SAFE_INTEGER       Number  .  MIN_SAFE_INTEGER  ];      let     top     =     Array  .  from  ({  length  :     3  }     ()     =>     Array  (  c  ).  fill  (  Number  .  MAX_SAFE_INTEGER  ));      let     bottom     =     Array  .  from  ({  length  :     3  }     ()     =>     Array  (  c  ).  fill  (  Number  .  MIN_SAFE_INTEGER  ));      // finding the r b g cells for the left      // and right vertices.      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      let     color     =     mapcolor  (  mat  [  i  ][  j  ]);      left  [  color  ]     =     Math  .  min  (  left  [  color  ]     j  );      right  [  color  ]     =     Math  .  max  (  right  [  color  ]     j  );      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      let     color     =     mapcolor  (  mat  [  i  ][  j  ]);      top  [  color  ][  j  ]     =     Math  .  min  (  top  [  color  ][  j  ]     i  );      bottom  [  color  ][  j  ]     =     Math  .  max  (  bottom  [  color  ][  j  ]     i  );      }      }      return     findarea  (  mat       r       c       top       bottom       left       right  );   }   // Driven Program   const     R     =     4  ;   const     C     =     5  ;   const     mat     =     [      [  'r'       'r'       'r'       'r'       'r'  ]      [  'r'       'r'       'r'       'r'       'g'  ]      [  'r'       'r'       'r'       'r'       'r'  ]      [  'b'       'b'       'b'       'b'       'b'  ]   ];   console  .  log  (  maxarea  (  mat       R       C  ));   // akashish__   

Izvade:  

 10  


Laika sarežģītība: O(R*C)
Palīgtelpa: O(R+C) 
Avots: https://stackoverflow.com/questions/40078660/maximum-area-of-triangle-having-all-vertices-of-different-color
 

Izveidojiet viktorīnu