Visų pogrupių vidurkio suma

Visų pogrupių vidurkio suma
Išbandykite GfG praktikoje #practiceLinkDiv { display: none !important; }

Atsižvelgiant į N sveikųjų skaičių elementų masyvo arr[], užduotis yra rasti visų šio masyvo poaibiulių vidurkio sumą.

Pavyzdys:   

 Input : arr[] = [2 3 5]   
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33 Recommended Practice Visų pogrupių vidurkio suma Išbandykite!

Naivus požiūris: Naivus sprendimas yra kartoti visus galimus poaibius ir gauti an vidutinis visų ir pridėkite juos po vieną, tačiau tai užtruks eksponentiškai ir bus neįmanoma didesniems masyvams. 
Mes galime gauti modelį imdami pavyzdį  

 arr = [a0 a1 a2 a3]   
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Koeficientas su skaitikliais gali būti paaiškintas taip, tarkime, kad kartojame poaibius su K elementų, tada vardiklis bus K, o skaitiklis bus r*S, kur „r“ reiškia, kiek kartų konkretus masyvo elementas bus pridėtas, kai kartojama per tokio paties dydžio poaibius. Patikrinus matome, kad r bus nCr(N - 1 n - 1), nes sudėjus vieną elementą reikia pasirinkti (n - 1) elementus iš (N - 1) elementų, kad kiekvieno elemento dažnis būtų nCr(N - 1 n - 1), o atsižvelgiant į tokio pat dydžio poaibius, nes visi elementai dalyvauja, o sumuojant bus lygus kartų skaičius, o galutinis dažnis S bus lygus. išraiška. 

Žemiau esančiame kode nCr realizuojamas naudojant dinaminio programavimo metodą daugiau apie tai galite paskaityti čia 

C++
   // C++ program to get sum of average of all subsets   #include          using     namespace     std  ;   // Returns value of Binomial Coefficient C(n k)   int     nCr  (  int     n       int     k  )   {      int     C  [  n     +     1  ][  k     +     1  ];      int     i       j  ;      // Calculate value of Binomial Coefficient in bottom      // up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using previously stored      // values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];   }   // method returns sum of average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;     // Initialize result      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   // java program to get sum of   // average of all subsets   import     java.io.*  ;   class   GFG     {      // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int     C  [][]     =     new     int  [  n     +     1  ][  k     +     1  ]  ;      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ]  ;      }      }      return     C  [  n  ][  k  ]  ;      }      // method returns sum of average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // looping once for all subset of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     2       3       5       7     };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by vt_m   
C#
   // C# program to get sum of   // average of all subsets   using     System  ;   class     GFG     {          // Returns value of Binomial      // Coefficient C(n k)      static     int     nCr  (  int     n       int     k  )      {      int  [     ]     C     =     new     int  [  n     +     1       k     +     1  ];      int     i       j  ;      // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  Min  (  i       k  );     j  ++  )         {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i       j  ]     =     1  ;      // Calculate value using      // previously stored values      else      C  [  i       j  ]     =     C  [  i     -     1       j     -     1  ]     +     C  [  i     -     1       j  ];      }      }      return     C  [  n       k  ];      }      // method returns sum of average       // of all subsets      static     double     resultOfAllSubsets  (  int  []     arr       int     N  )      {      // Initialize result      double     result     =     0.0  ;      // Find sum of elements      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // looping once for all subset       // of same size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  double  )(  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;      return     result  ;      }      // Driver code to test above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  resultOfAllSubsets  (  arr       N  ));      }   }   // This code is contributed by Sam007   
JavaScript
    <  script  >      // javascript program to get sum of      // average of all subsets          // Returns value of Binomial      // Coefficient C(n k)      function     nCr  (  n       k  )      {      let     C     =     new     Array  (  n     +     1  );      for     (  let     i     =     0  ;     i      <=     n  ;     i  ++  )         {      C  [  i  ]     =     new     Array  (  k     +     1  );      for     (  let     j     =     0  ;     j      <=     k  ;     j  ++  )         {      C  [  i  ][  j  ]     =     0  ;      }      }      let     i       j  ;          // Calculate value of Binomial      // Coefficient in bottom up manner      for     (  i     =     0  ;     i      <=     n  ;     i  ++  )     {      for     (  j     =     0  ;     j      <=     Math  .  min  (  i       k  );     j  ++  )     {      // Base Cases      if     (  j     ==     0     ||     j     ==     i  )      C  [  i  ][  j  ]     =     1  ;          // Calculate value using      // previously stored values      else      C  [  i  ][  j  ]     =     C  [  i     -     1  ][  j     -     1  ]     +     C  [  i     -     1  ][  j  ];      }      }      return     C  [  n  ][  k  ];      }          // method returns sum of average of all subsets      function     resultOfAllSubsets  (  arr       N  )      {      // Initialize result      let     result     =     0.0  ;          // Find sum of elements      let     sum     =     0  ;      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];          // looping once for all subset of same size      for     (  let     n     =     1  ;     n      <=     N  ;     n  ++  )          /* each element occurs nCr(N-1 n-1) times while    considering subset of size n */      result     +=     (  sum     *     (  nCr  (  N     -     1       n     -     1  )))     /     n  ;          return     result  ;      }          let     arr     =     [     2       3       5       7     ];      let     N     =     arr  .  length  ;      document  .  write  (  resultOfAllSubsets  (  arr       N  ));        <  /script>   
PHP
      // PHP program to get sum    // of average of all subsets   // Returns value of Binomial   // Coefficient C(n k)   function   nCr  (  $n     $k  )   {   $C  [  $n   +   1  ][  $k   +   1  ]   =   0  ;   $i  ;   $j  ;   // Calculate value of Binomial   // Coefficient in bottom up manner   for   (  $i   =   0  ;   $i    <=   $n  ;   $i  ++  )   {   for   (  $j   =   0  ;   $j    <=   min  (  $i     $k  );   $j  ++  )   {   // Base Cases   if   (  $j   ==   0   ||   $j   ==   $i  )   $C  [  $i  ][  $j  ]   =   1  ;   // Calculate value using    // previously stored values   else   $C  [  $i  ][  $j  ]   =   $C  [  $i   -   1  ][  $j   -   1  ]   +   $C  [  $i   -   1  ][  $j  ];   }   }   return   $C  [  $n  ][  $k  ];   }   // method returns sum of   // average of all subsets   function   resultOfAllSubsets  (  $arr     $N  )   {   // Initialize result   $result   =   0.0  ;   // Find sum of elements   $sum   =   0  ;   for   (  $i   =   0  ;   $i    <   $N  ;   $i  ++  )   $sum   +=   $arr  [  $i  ];   // looping once for all    // subset of same size   for   (  $n   =   1  ;   $n    <=   $N  ;   $n  ++  )   /* each element occurs nCr(N-1     n-1) times while considering     subset of size n */   $result   +=   ((  $sum   *   (  nCr  (  $N   -   1     $n   -   1  )))   /   $n  );   return   $result  ;   }   // Driver Code   $arr   =   array  (   2     3     5     7   );   $N   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   resultOfAllSubsets  (  $arr     $N  )   ;   // This code is contributed by nitin mittal.    ?>   
Python3
   # Python3 program to get sum   # of average of all subsets   # Returns value of Binomial   # Coefficient C(n k)   def   nCr  (  n     k  ):   C   =   [[  0   for   i   in   range  (  k   +   1  )]   for   j   in   range  (  n   +   1  )]   # Calculate value of Binomial    # Coefficient in bottom up manner   for   i   in   range  (  n   +   1  ):   for   j   in   range  (  min  (  i     k  )   +   1  ):   # Base Cases   if   (  j   ==   0   or   j   ==   i  ):   C  [  i  ][  j  ]   =   1   # Calculate value using    # previously stored values   else  :   C  [  i  ][  j  ]   =   C  [  i  -  1  ][  j  -  1  ]   +   C  [  i  -  1  ][  j  ]   return   C  [  n  ][  k  ]   # Method returns sum of   # average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   # Initialize result   # Find sum of elements   sum   =   0   for   i   in   range  (  N  ):   sum   +=   arr  [  i  ]   # looping once for all subset of same size   for   n   in   range  (  1     N   +   1  ):   # each element occurs nCr(N-1 n-1) times while   # considering subset of size n */   result   +=   (  sum   *   (  nCr  (  N   -   1     n   -   1  )))   /   n   return   result   # Driver code    arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   # This code is contributed by Anant Agarwal.   

Išvestis
63.75 

Laiko sudėtingumas: O (n 3 )
Pagalbinė erdvė: O (n 2 )

Efektyvus požiūris: erdvės optimizavimas O(1)
Norėdami optimizuoti pirmiau pateikto metodo erdvės sudėtingumą, galime naudoti efektyvesnį metodą, kuris nereikalauja visos matricos C[][] binominiams koeficientams saugoti. Vietoj to galime naudoti kombinuotą formulę, kad prireikus tiesiogiai apskaičiuotų binominį koeficientą.

Diegimo žingsniai:

  • Pakartokite masyvo elementus ir apskaičiuokite visų elementų sumą.
  • Pakartokite kiekvieną pogrupio dydį nuo 1 iki N.
  • Apskaičiuokite kilpos viduje vidutinis elementų sumos, padaugintos iš poaibio dydžio dvinario koeficiento. Prie rezultato pridėkite apskaičiuotą vidurkį.
  • Grąžinkite galutinį rezultatą.

Įgyvendinimas:

C++
   #include          using     namespace     std  ;   // Method to calculate binomial coefficient C(n k)   int     binomialCoeff  (  int     n       int     k  )   {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Method to calculate the sum of the average of all subsets   double     resultOfAllSubsets  (  int     arr  []     int     N  )   {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;   }   // Driver code to test the above methods   int     main  ()   {      int     arr  []     =     {     2       3       5       7     };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      cout      < <     resultOfAllSubsets  (  arr       N  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      // Method to calculate binomial coefficient C(n k)      static     int     binomialCoeff  (  int     n       int     k  )     {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     resultOfAllSubsets  (  int     arr  []       int     N  )     {      double     result     =     0.0  ;      int     sum     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sum     +=     arr  [  i  ]  ;      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )     (  sum     *     binomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     main  (  String  []     args  )     {      int     arr  []     =     {  2       3       5       7  };      int     N     =     arr  .  length  ;      System  .  out  .  println  (  resultOfAllSubsets  (  arr       N  ));      }   }   
C#
   using     System  ;   public     class     MainClass   {      // Method to calculate binomial coefficient C(n k)      static     int     BinomialCoeff  (  int     n       int     k  )      {      int     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )      {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;      }      // Method to calculate the sum of the average of all subsets      static     double     ResultOfAllSubsets  (  int  []     arr       int     N  )      {      double     result     =     0.0  ;      int     sumVal     =     0  ;      // Calculate the sum of elements      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      sumVal     +=     arr  [  i  ];      // Loop for each subset size      for     (  int     n     =     1  ;     n      <=     N  ;     n  ++  )      result     +=     (  double  )(  sumVal     *     BinomialCoeff  (  N     -     1       n     -     1  ))     /     n  ;      return     result  ;      }      // Driver code to test the above methods      public     static     void     Main  ()      {      int  []     arr     =     {     2       3       5       7     };      int     N     =     arr  .  Length  ;      Console  .  WriteLine  (  ResultOfAllSubsets  (  arr       N  ));      }   }   
JavaScript
   // Function to calculate binomial coefficient C(n k)   function     binomialCoeff  (  n       k  )     {      let     res     =     1  ;      // Since C(n k) = C(n n-k)      if     (  k     >     n     -     k  )      k     =     n     -     k  ;      // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      res     *=     (  n     -     i  );      res     /=     (  i     +     1  );      }      return     res  ;   }   // Function to calculate the sum of the average of all subsets   function     resultOfAllSubsets  (  arr  )     {      let     result     =     0.0  ;      let     sum     =     arr  .  reduce  ((  acc       val  )     =>     acc     +     val       0  );      // Loop for each subset size      for     (  let     n     =     1  ;     n      <=     arr  .  length  ;     n  ++  )     {      result     +=     (  sum     *     binomialCoeff  (  arr  .  length     -     1       n     -     1  ))     /     n  ;      }      return     result  ;   }   const     arr     =     [  2       3       5       7  ];   console  .  log  (  resultOfAllSubsets  (  arr  ));   
Python3
   # Method to calculate binomial coefficient C(n k)   def   binomialCoeff  (  n     k  ):   res   =   1   # Since C(n k) = C(n n-k)   if   k   >   n   -   k  :   k   =   n   -   k   # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]   for   i   in   range  (  k  ):   res   *=   (  n   -   i  )   res   //=   (  i   +   1  )   return   res   # Method to calculate the sum of the average of all subsets   def   resultOfAllSubsets  (  arr     N  ):   result   =   0.0   sum_val   =   0   # Calculate the sum of elements   for   i   in   range  (  N  ):   sum_val   +=   arr  [  i  ]   # Loop for each subset size   for   n   in   range  (  1     N   +   1  ):   result   +=   (  sum_val   *   binomialCoeff  (  N   -   1     n   -   1  ))   /   n   return   result   # Driver code to test the above methods   arr   =   [  2     3     5     7  ]   N   =   len  (  arr  )   print  (  resultOfAllSubsets  (  arr     N  ))   


Išvestis

 63.75  

Laiko sudėtingumas: O(n^2)
Pagalbinė erdvė: O(1)



 

Sukurti viktoriną