Petersono abipusio atskirties algoritmas | 2 rinkinys (CPU ciklai ir atminties tvora)

Petersono abipusio atskirties algoritmas | 2 rinkinys (CPU ciklai ir atminties tvora)

Problema: Atsižvelgiant į 2 procesą I ir J, turite parašyti programą, kuri galėtų garantuoti abipusį atskirtį tarp dviejų be jokios papildomos aparatinės įrangos palaikymo.

CPU laikrodžio ciklų švaistymas

Layman požiūriu, kai gija laukė savo ruožtu, jis pasibaigė ilgą laiką, kol kilpa, kuri maždaug milijonus kartų per sekundę išbandė sąlygą, taigi atlikdamas nereikalingą skaičiavimą. Yra geresnis būdas laukti ir jis yra žinomas kaip „Derling“ .

Norėdami suprasti, ką tai daro, turime gilintis į tai, kaip proceso planavimo priemonė veikia „Linux“. Čia paminėta idėja yra supaprastinta planavimo priemonės versija. Tikrasis diegimas turi daug komplikacijų.

Apsvarstykite šį pavyzdį 
Yra trys procesai P1 P2 ir P3. Procesas P3 yra toks, kad jis turi šiek tiek kilpą, panašią į mūsų kodą, atliekant ne tokį naudingą skaičiavimą, ir iš kilpos egzistuoja tik tada, kai P2 baigia vykdyti. Tvarkaraštis visus juos sudeda į apvalią Robino eilę. Dabar sakykite, kad procesoriaus laikrodžio greitis yra 1000000/sek. Ir kiekvienam iteracijai jis skiria 100 laikrodžių kiekvienam procesui. Tada pirmasis P1 bus paleistas 100 laikrodžių (0,0001 sekundės), tada P2 (0,0001 sekundė), po to p3 (0,0001 sekundė) dabar, nes daugiau procesų nėra šio ciklo kartojimo, kol P2 pasibaigs, o po to atliks P3 vykdymą ir galiausiai jo nutraukimą.

Tai yra visiškas 100 CPU laikrodžio ciklų švaistymas. Norėdami to išvengti, mes abipusiai atsisakome procesoriaus laiko pjūvio, t. Y. Derlingumo, kuris iš esmės baigiasi šį laiko pjūvį, o planuoklis pasirinks kitą procesą, kurį reikia paleisti. Dabar mes tikriname savo būklę, tada atsisakome procesoriaus. Atsižvelgiant į tai, kad mūsų testas trunka 25 laikrodžio ciklus, mes sutaupome 75% savo skaičiavimo per tam tikrą laiką. Norėdami tai įdėti grafiškai
 

Petersono abipusio atskirties algoritmas | 2 rinkinys (CPU ciklai ir atminties tvora)

Atsižvelgiant į procesoriaus laikrodžio greitį kaip 1MHz, tai yra daug taupymo!. 
Skirtingi paskirstymai suteikia skirtingas funkcijas šiam funkcionalumui pasiekti. „Linux“ teikia „sched_yield“ () .

C
   void     lock  (  int     self  )   {      flag  [  self  ]     =     1  ;      turn     =     1  -  self  ;      while     (  flag  [  1  -  self  ]     ==     1     &&      turn     ==     1  -  self  )          // Only change is the addition of      // sched_yield() call      sched_yield  ();   }   

Atminties tvora.

Ankstesnio vadovo kodas galėjo veikti daugelyje sistemų, tačiau jis nebuvo 100% teisingas. Logika buvo tobula, tačiau moderniausi „CPUS“ naudoja našumo optimizavimą, dėl kurio gali būti vykdoma ne pagal užsakymą. Šis atminties operacijų (apkrovų ir parduotuvių) pertvarkymas paprastai būna nepastebėtas per vieną vykdymo giją, tačiau gali sukelti nenuspėjamą elgesį kartu su tuo pačiu metu.
Apsvarstykite šį pavyzdį 

C
      while     (  f     ==     0  );          // Memory fence required here      print     x  ;   

Aukščiau pateiktame pavyzdyje kompiliatorius mano, kad 2 teiginiai yra nepriklausomi vienas nuo kito ir taip bando padidinti kodo efektyvumą iš naujo užsisakydamas juos, o tai gali sukelti problemų dėl lygiagrečių programų. Norėdami to išvengti, mes pateikiame atminties tvorą, kad kompiliatoriui būtų užuomina apie galimą ryšį tarp teiginių per barjerą.

Taigi teiginių tvarka  

vėliava [aš] = 1; 
posūkis = 1-savęs; 
tuo tarpu (posūkio būklės patikrinimas) 
derlius (); 
 

turi būti visiškai tas pats, kad užraktas veiktų, nes kitaip jis pasibaigs aklavietėje.

Norėdami užtikrinti, kad šie kompiliatoriai pateiktų instrukciją, kuri neleidžia nurodyti teiginių per šią barjerą. Pabuošlinio pulto atveju __sync_synchronize () .
Taigi modifikuotas kodas tampa 
Visas įgyvendinimas C:

C++
   // Filename: peterson_yieldlock_memoryfence.cpp   // Use below command to compile:   // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence   #include       #include      #include       std  ::  atomic   <  int  >     flag  [  2  ];   std  ::  atomic   <  int  >     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      std  ::  atomic_thread_fence  (  std  ::  memory_order_seq_cst  );      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      std  ::  this_thread  ::  yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void     func  (  int     s  )   {      int     i     =     0  ;      int     self     =     s  ;      std  ::  cout      < <     'Thread Entered: '      < <     self      < <     std  ::  endl  ;      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         // Initialize the lock       lock_init  ();      // Create two threads (both run func)      std  ::  thread     t1  (  func       0  );      std  ::  thread     t2  (  func       1  );      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      std  ::  cout      < <     'Actual Count: '      < <     ans      < <     ' | Expected Count: '      < <     MAX  *  2      < <     std  ::  endl  ;      return     0  ;   }   
C
   // Filename: peterson_yieldlock_memoryfence.c   // Use below command to compile:   // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence   #include      #include      #include     'mythreads.h'   int     flag  [  2  ];   int     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      __sync_synchronize  ();      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      sched_yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void  *     func  (  void     *  s  )   {      int     i     =     0  ;      int     self     =     (  int     *  )  s  ;      printf  (  'Thread Entered: %d  n  '    self  );      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         pthread_t     p1       p2  ;      // Initialize the lock       lock_init  ();      // Create two threads (both run func)      Pthread_create  (  &  p1       NULL       func       (  void  *  )  0  );      Pthread_create  (  &  p2       NULL       func       (  void  *  )  1  );      // Wait for the threads to end.      Pthread_join  (  p1       NULL  );      Pthread_join  (  p2       NULL  );      printf  (  'Actual Count: %d | Expected Count:'      ' %d  n  '    ans    MAX  *  2  );      return     0  ;   }   
Java
   import     java.util.concurrent.atomic.AtomicInteger  ;   public     class   PetersonYieldLockMemoryFence     {      static     AtomicInteger  []     flag     =     new     AtomicInteger  [  2  ]  ;      static     AtomicInteger     turn     =     new     AtomicInteger  ();      static     final     int     MAX     =     1000000000  ;      static     int     ans     =     0  ;      static     void     lockInit  ()     {      flag  [  0  ]     =     new     AtomicInteger  ();      flag  [  1  ]     =     new     AtomicInteger  ();      flag  [  0  ]  .  set  (  0  );      flag  [  1  ]  .  set  (  0  );      turn  .  set  (  0  );      }      static     void     lock  (  int     self  )     {      flag  [  self  ]  .  set  (  1  );      turn  .  set  (  1     -     self  );      // Memory fence to prevent the reordering of instructions beyond this barrier.      // In Java volatile variables provide this guarantee implicitly.      // No direct equivalent to atomic_thread_fence is needed.      while     (  flag  [  1     -     self  ]  .  get  ()     ==     1     &&     turn  .  get  ()     ==     1     -     self  )      Thread  .  yield  ();      }      static     void     unlock  (  int     self  )     {      flag  [  self  ]  .  set  (  0  );      }      static     void     func  (  int     s  )     {      int     i     =     0  ;      int     self     =     s  ;      System  .  out  .  println  (  'Thread Entered: '     +     self  );      lock  (  self  );      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );      }      public     static     void     main  (  String  []     args  )     {      // Initialize the lock      lockInit  ();      // Create two threads (both run func)      Thread     t1     =     new     Thread  (()     ->     func  (  0  ));      Thread     t2     =     new     Thread  (()     ->     func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      try     {      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      }     catch     (  InterruptedException     e  )     {      e  .  printStackTrace  ();      }      System  .  out  .  println  (  'Actual Count: '     +     ans     +     ' | Expected Count: '     +     MAX     *     2  );      }   }   
Python
   import   threading   flag   =   [  0     0  ]   turn   =   0   MAX   =   10  **  9   ans   =   0   def   lock_init  ():   # This function initializes the lock by resetting the flags and turn.   global   flag     turn   flag   =   [  0     0  ]   turn   =   0   def   lock  (  self  ):   # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread.   global   flag     turn   flag  [  self  ]   =   1   turn   =   1   -   self   while   flag  [  1  -  self  ]   ==   1   and   turn   ==   1  -  self  :   pass   def   unlock  (  self  ):   # This function is executed after leaving the critical section. It resets the flag for the current thread.   global   flag   flag  [  self  ]   =   0   def   func  (  s  ):   # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section.   global   ans   self   =   s   print  (  f  'Thread Entered:   {  self  }  '  )   lock  (  self  )   for   _   in   range  (  MAX  ):   ans   +=   1   unlock  (  self  )   def   main  ():   # This is the main function where the threads are created and started.   lock_init  ()   t1   =   threading  .  Thread  (  target  =  func     args  =  (  0  ))   t2   =   threading  .  Thread  (  target  =  func     args  =  (  1  ))   t1  .  start  ()   t2  .  start  ()   t1  .  join  ()   t2  .  join  ()   print  (  f  'Actual Count:   {  ans  }   | Expected Count:   {  MAX  *  2  }  '  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   class     PetersonYieldLockMemoryFence     {      static     flag     =     [  0       0  ];      static     turn     =     0  ;      static     MAX     =     1000000000  ;      static     ans     =     0  ;      // Function to acquire the lock      static     async     lock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     1  ;      PetersonYieldLockMemoryFence  .  turn     =     1     -     self  ;      // Asynchronous loop with a small delay to yield      while     (  PetersonYieldLockMemoryFence  .  flag  [  1     -     self  ]     ==     1     &&      PetersonYieldLockMemoryFence  .  turn     ==     1     -     self  )     {      await     new     Promise  (  resolve     =>     setTimeout  (  resolve       0  ));      }      }      // Function to release the lock      static     unlock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     0  ;      }      // Function representing the critical section      static     func  (  s  )     {      let     i     =     0  ;      let     self     =     s  ;      console  .  log  (  'Thread Entered: '     +     self  );          // Lock the critical section      PetersonYieldLockMemoryFence  .  lock  (  self  ).  then  (()     =>     {      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     PetersonYieldLockMemoryFence  .  MAX  ;     i  ++  )     {      PetersonYieldLockMemoryFence  .  ans  ++  ;      }          // Release the lock      PetersonYieldLockMemoryFence  .  unlock  (  self  );      });      }      // Main function      static     main  ()     {      // Create two threads (both run func)      const     t1     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  0  ));      const     t2     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      // Wait for the threads to end.      setTimeout  (()     =>     {      console  .  log  (  'Actual Count: '     +     PetersonYieldLockMemoryFence  .  ans     +     ' | Expected Count: '     +     PetersonYieldLockMemoryFence  .  MAX     *     2  );      }     1000  );     // Delay for a while to ensure threads finish      }   }   // Define a simple Thread class for simulation   class     Thread     {      constructor  (  func  )     {      this  .  func     =     func  ;      }      start  ()     {      this  .  func  ();      }   }   // Run the main function   PetersonYieldLockMemoryFence  .  main  ();   
C++
   // mythread.h (A wrapper header file with assert statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include         #include         // Function to lock a pthread mutex   void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was locked successfully   }       // Function to unlock a pthread mutex   void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was unlocked successfully   }       // Function to create a pthread   void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );     // Assert that the thread was created successfully   }   // Function to join a pthread   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );     // Assert that the thread was joined successfully   }   #endif   // __MYTHREADS_h__   
C
   // mythread.h (A wrapper header file with assert   // statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include          #include         void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );   }   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );   }   #endif   // __MYTHREADS_h__   
Python
   import   threading   import   ctypes   # Function to lock a thread lock   def   Thread_lock  (  lock  ):   lock  .  acquire  ()   # Acquire the lock   # No need for assert in Python acquire will raise an exception if it fails   # Function to unlock a thread lock   def   Thread_unlock  (  lock  ):   lock  .  release  ()   # Release the lock   # No need for assert in Python release will raise an exception if it fails   # Function to create a thread   def   Thread_create  (  target     args  =  ()):   thread   =   threading  .  Thread  (  target  =  target     args  =  args  )   thread  .  start  ()   # Start the thread   # No need for assert in Python thread.start() will raise an exception if it fails   # Function to join a thread   def   Thread_join  (  thread  ):   thread  .  join  ()   # Wait for the thread to finish   # No need for assert in Python thread.join() will raise an exception if it fails   

Išvestis: 

 Thread Entered: 1   
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000