Given a connected and undirected graph a spanning tree of that graph is a subgraph that is a tree and connects all the vertices together. A single graph can have many different spanning trees. Mažiausias sandauginis aprėpiamasis medis svertiniam sujungtam ir nenukreiptam grafikui yra apimantis medis, kurio svorio sandauga yra mažesnė arba lygi kiekvieno kito apimamojo medžio svorio sandaugai. The weight product of a spanning tree is the product of weights corresponding to each edge of the spanning tree. All weights of the given graph will be positive for simplicity.

Pavyzdžiai:

Minimalus produktas apimantis medis

Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1 1-2 0-3 and 1-4 

Šią problemą galima išspręsti naudojant standartinius minimalaus apimančio medžio algoritmus, tokius kaip Kruskal ( https://www.geeksforgeeks.org/dsa/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/ ) ir prim algoritmą, tačiau turime pakeisti savo grafiką, kad galėtume naudoti šiuos algoritmus. Minimalaus apimančio medžio algoritmai bando sumažinti bendrą svorių sumą, čia turime sumažinti bendrą svorių sandaugą. We can use the property of logaritmus įveikti šią problemą. 
Kaip žinome 

 log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN) 


Kiekvieną grafiko svorį galime pakeisti jo logaritmine reikšme, tada taikome bet kokį minimalaus apimančio medžio algoritmą, kuris bandys sumažinti log(wi) sumą, o tai savo ruožtu sumažina svorio sandaugą. 
Pavyzdžiui, pavaizduokite žingsnius, parodytus žemiau esančioje diagramoje 
 


Žemiau esančiame kode pirmiausia sukūrėme log grafiką iš nurodytos įvesties grafiko, tada šis grafikas pateikiamas kaip įvestis prim MST algoritmui, kuris sumažins bendrą medžio svorių sumą. Kadangi modifikuoto grafiko svoriai yra tikrosios įvesties grafiko logaritmai, mes iš tikrųjų sumažiname aprėpiamojo medžio svorių sandaugą.  

C++
   // A C++ program for getting minimum product   // spanning tree The program is for adjacency matrix   // representation of the graph   #include          // Number of vertices in the graph   #define V 5   // A utility function to find the vertex with minimum   // key value from the set of vertices not yet included   // in MST   int     minKey  (  int     key  []     bool     mstSet  [])   {      // Initialize min value      int     min     =     INT_MAX       min_index  ;      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )      if     (  mstSet  [  v  ]     ==     false     &&     key  [  v  ]      <     min  )      min     =     key  [  v  ]     min_index     =     v  ;      return     min_index  ;   }   // A utility function to print the constructed MST   // stored in parent[] and print Minimum Obtainable   // product   int     printMST  (  int     parent  []     int     n       int     graph  [  V  ][  V  ])   {      printf  (  'Edge Weight  n  '  );      int     minProduct     =     1  ;      for     (  int     i     =     1  ;     i      <     V  ;     i  ++  )     {      printf  (  '%d - %d %d   n  '        parent  [  i  ]     i       graph  [  i  ][  parent  [  i  ]]);      minProduct     *=     graph  [  i  ][  parent  [  i  ]];      }      printf  (  'Minimum Obtainable product is %d  n  '        minProduct  );   }   // Function to construct and print MST for a graph   // represented using adjacency matrix representation   // inputGraph is sent for printing actual edges and   // logGraph is sent for actual MST operations   void     primMST  (  int     inputGraph  [  V  ][  V  ]     double     logGraph  [  V  ][  V  ])   {      int     parent  [  V  ];     // Array to store constructed MST      int     key  [  V  ];     // Key values used to pick minimum      // weight edge in cut      bool     mstSet  [  V  ];     // To represent set of vertices not      // yet included in MST      // Initialize all keys as INFINITE      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )      key  [  i  ]     =     INT_MAX       mstSet  [  i  ]     =     false  ;      // Always include first 1st vertex in MST.      key  [  0  ]     =     0  ;     // Make key 0 so that this vertex is      // picked as first vertex      parent  [  0  ]     =     -1  ;     // First node is always root of MST      // The MST will have V vertices      for     (  int     count     =     0  ;     count      <     V     -     1  ;     count  ++  )     {      // Pick the minimum key vertex from the set of      // vertices not yet included in MST      int     u     =     minKey  (  key       mstSet  );      // Add the picked vertex to the MST Set      mstSet  [  u  ]     =     true  ;      // Update key value and parent index of the      // adjacent vertices of the picked vertex.      // Consider only those vertices which are not yet      // included in MST      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )      // logGraph[u][v] is non zero only for      // adjacent vertices of m mstSet[v] is false      // for vertices not yet included in MST      // Update the key only if logGraph[u][v] is      // smaller than key[v]      if     (  logGraph  [  u  ][  v  ]     >     0     &&     mstSet  [  v  ]     ==     false     &&     logGraph  [  u  ][  v  ]      <     key  [  v  ])      parent  [  v  ]     =     u       key  [  v  ]     =     logGraph  [  u  ][  v  ];      }      // print the constructed MST      printMST  (  parent       V       inputGraph  );   }   // Method to get minimum product spanning tree   void     minimumProductMST  (  int     graph  [  V  ][  V  ])   {      double     logGraph  [  V  ][  V  ];      // Constructing logGraph from original graph      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     V  ;     j  ++  )     {      if     (  graph  [  i  ][  j  ]     >     0  )      logGraph  [  i  ][  j  ]     =     log  (  graph  [  i  ][  j  ]);      else      logGraph  [  i  ][  j  ]     =     0  ;      }      }      // Applying standard Prim's MST algorithm on      // Log graph.      primMST  (  graph       logGraph  );   }   // driver program to test above function   int     main  ()   {      /* Let us create the following graph    2 3    (0)--(1)--(2)    | /  |    6| 8/ 5 |7    | /  |    (3)-------(4)    9 */      int     graph  [  V  ][  V  ]     =     {      {     0       2       0       6       0     }      {     2       0       3       8       5     }      {     0       3       0       0       7     }      {     6       8       0       0       9     }      {     0       5       7       9       0     }      };      // Print the solution      minimumProductMST  (  graph  );      return     0  ;   }   
Java
   // A Java program for getting minimum product   // spanning tree The program is for adjacency matrix   // representation of the graph   import     java.util.*  ;   class   GFG     {      // Number of vertices in the graph      static     int     V     =     5  ;      // A utility function to find the vertex with minimum      // key value from the set of vertices not yet included      // in MST      static     int     minKey  (  int     key  []       boolean  []     mstSet  )      {      // Initialize min value      int     min     =     Integer  .  MAX_VALUE       min_index     =     0  ;      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )     {      if     (  mstSet  [  v  ]     ==     false     &&     key  [  v  ]      <     min  )     {      min     =     key  [  v  ]  ;      min_index     =     v  ;      }      }      return     min_index  ;      }      // A utility function to print the constructed MST      // stored in parent[] and print Minimum Obtainable      // product      static     void     printMST  (  int     parent  []       int     n       int     graph  [][]  )      {      System  .  out  .  printf  (  'Edge Weightn'  );      int     minProduct     =     1  ;      for     (  int     i     =     1  ;     i      <     V  ;     i  ++  )     {      System  .  out  .  printf  (  '%d - %d %d n'        parent  [  i  ]       i       graph  [  i  ][  parent  [  i  ]]  );      minProduct     *=     graph  [  i  ][  parent  [  i  ]]  ;      }      System  .  out  .  printf  (  'Minimum Obtainable product is %dn'        minProduct  );      }      // Function to construct and print MST for a graph      // represented using adjacency matrix representation      // inputGraph is sent for printing actual edges and      // logGraph is sent for actual MST operations      static     void     primMST  (  int     inputGraph  [][]       double     logGraph  [][]  )      {      int  []     parent     =     new     int  [  V  ]  ;     // Array to store constructed MST      int  []     key     =     new     int  [  V  ]  ;     // Key values used to pick minimum      // weight edge in cut      boolean  []     mstSet     =     new     boolean  [  V  ]  ;     // To represent set of vertices not      // yet included in MST      // Initialize all keys as INFINITE      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )     {      key  [  i  ]     =     Integer  .  MAX_VALUE  ;      mstSet  [  i  ]     =     false  ;      }      // Always include first 1st vertex in MST.      key  [  0  ]     =     0  ;     // Make key 0 so that this vertex is      // picked as first vertex      parent  [  0  ]     =     -  1  ;     // First node is always root of MST      // The MST will have V vertices      for     (  int     count     =     0  ;     count      <     V     -     1  ;     count  ++  )     {      // Pick the minimum key vertex from the set of      // vertices not yet included in MST      int     u     =     minKey  (  key       mstSet  );      // Add the picked vertex to the MST Set      mstSet  [  u  ]     =     true  ;      // Update key value and parent index of the      // adjacent vertices of the picked vertex.      // Consider only those vertices which are not yet      // included in MST      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )     // logGraph[u][v] is non zero only for      // adjacent vertices of m mstSet[v] is false      // for vertices not yet included in MST      // Update the key only if logGraph[u][v] is      // smaller than key[v]      {      if     (  logGraph  [  u  ][  v  ]     >     0      &&     mstSet  [  v  ]     ==     false      &&     logGraph  [  u  ][  v  ]      <     key  [  v  ]  )     {      parent  [  v  ]     =     u  ;      key  [  v  ]     =     (  int  )  logGraph  [  u  ][  v  ]  ;      }      }      }      // print the constructed MST      printMST  (  parent       V       inputGraph  );      }      // Method to get minimum product spanning tree      static     void     minimumProductMST  (  int     graph  [][]  )      {      double  [][]     logGraph     =     new     double  [  V  ][  V  ]  ;      // Constructing logGraph from original graph      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     V  ;     j  ++  )     {      if     (  graph  [  i  ][  j  ]     >     0  )     {      logGraph  [  i  ][  j  ]     =     Math  .  log  (  graph  [  i  ][  j  ]  );      }      else     {      logGraph  [  i  ][  j  ]     =     0  ;      }      }      }      // Applying standard Prim's MST algorithm on      // Log graph.      primMST  (  graph       logGraph  );      }      // Driver code      public     static     void     main  (  String  []     args  )      {      /* Let us create the following graph    2 3    (0)--(1)--(2)    | /  |    6| 8/ 5 |7    | /  |    (3)-------(4)    9 */      int     graph  [][]     =     {      {     0       2       0       6       0     }      {     2       0       3       8       5     }      {     0       3       0       0       7     }      {     6       8       0       0       9     }      {     0       5       7       9       0     }      };      // Print the solution      minimumProductMST  (  graph  );      }   }   // This code has been contributed by 29AjayKumar   
Python3
   # A Python3 program for getting minimum   # product spanning tree The program is    # for adjacency matrix representation   # of the graph    import   math   # Number of vertices in the graph    V   =   5   # A utility function to find the vertex   # with minimum key value from the set    # of vertices not yet included in MST    def   minKey  (  key     mstSet  ):   # Initialize min value    min   =   10000000   min_index   =   0   for   v   in   range  (  V  ):   if   (  mstSet  [  v  ]   ==   False   and   key  [  v  ]    <   min  ):   min   =   key  [  v  ]   min_index   =   v   return   min_index   # A utility function to print the constructed    # MST stored in parent[] and print Minimum    # Obtainable product    def   printMST  (  parent     n     graph  ):   print  (  'Edge Weight'  )   minProduct   =   1   for   i   in   range  (  1     V  ):   print  (  '  {}   -   {}     {}   '  .  format  (  parent  [  i  ]   i     graph  [  i  ][  parent  [  i  ]]))   minProduct   *=   graph  [  i  ][  parent  [  i  ]]   print  (  'Minimum Obtainable product is   {}  '  .  format  (   minProduct  ))   # Function to construct and print MST for    # a graph represented using adjacency    # matrix representation inputGraph is   # sent for printing actual edges and    # logGraph is sent for actual MST    # operations    def   primMST  (  inputGraph     logGraph  ):   # Array to store constructed MST    parent   =   [  0   for   i   in   range  (  V  )]   # Key values used to pick minimum    key   =   [  10000000   for   i   in   range  (  V  )]   # weight edge in cut    # To represent set of vertices not    mstSet   =   [  False   for   i   in   range  (  V  )]   # Yet included in MST    # Always include first 1st vertex in MST    # Make key 0 so that this vertex is    key  [  0  ]   =   0   # Picked as first vertex    # First node is always root of MST    parent  [  0  ]   =   -  1   # The MST will have V vertices    for   count   in   range  (  0     V   -   1  ):   # Pick the minimum key vertex from   # the set of vertices not yet    # included in MST    u   =   minKey  (  key     mstSet  )   # Add the picked vertex to the MST Set    mstSet  [  u  ]   =   True   # Update key value and parent index   # of the adjacent vertices of the    # picked vertex. Consider only those    # vertices which are not yet    # included in MST    for   v   in   range  (  V  ):   # logGraph[u][v] is non zero only   # for adjacent vertices of m    # mstSet[v] is false for vertices   # not yet included in MST. Update    # the key only if logGraph[u][v] is    # smaller than key[v]    if   (  logGraph  [  u  ][  v  ]   >   0   and   mstSet  [  v  ]   ==   False   and   logGraph  [  u  ][  v  ]    <   key  [  v  ]):   parent  [  v  ]   =   u   key  [  v  ]   =   logGraph  [  u  ][  v  ]   # Print the constructed MST    printMST  (  parent     V     inputGraph  )   # Method to get minimum product spanning tree    def   minimumProductMST  (  graph  ):   logGraph   =   [[  0   for   j   in   range  (  V  )]   for   i   in   range  (  V  )]   # Constructing logGraph from    # original graph    for   i   in   range  (  V  ):   for   j   in   range  (  V  ):   if   (  graph  [  i  ][  j  ]   >   0  ):   logGraph  [  i  ][  j  ]   =   math  .  log  (  graph  [  i  ][  j  ])   else  :   logGraph  [  i  ][  j  ]   =   0   # Applying standard Prim's MST algorithm   # on Log graph.    primMST  (  graph     logGraph  )   # Driver code   if   __name__  ==  '__main__'  :          ''' Let us create the following graph     2 3     (0)--(1)--(2)     | /  |     6| 8/ 5 |7     | /  |     (3)-------(4)     9 '''   graph   =   [   [   0     2     0     6     0   ]   [   2     0     3     8     5   ]   [   0     3     0     0     7   ]   [   6     8     0     0     9   ]   [   0     5     7     9     0   ]   ]   # Print the solution    minimumProductMST  (  graph  )   # This code is contributed by rutvik_56   
C#
   // C# program for getting minimum product   // spanning tree The program is for adjacency matrix   // representation of the graph   using     System  ;   class     GFG     {      // Number of vertices in the graph      static     int     V     =     5  ;      // A utility function to find the vertex with minimum      // key value from the set of vertices not yet included      // in MST      static     int     minKey  (  int  []     key       Boolean  []     mstSet  )      {      // Initialize min value      int     min     =     int  .  MaxValue       min_index     =     0  ;      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )     {      if     (  mstSet  [  v  ]     ==     false     &&     key  [  v  ]      <     min  )     {      min     =     key  [  v  ];      min_index     =     v  ;      }      }      return     min_index  ;      }      // A utility function to print the constructed MST      // stored in parent[] and print Minimum Obtainable      // product      static     void     printMST  (  int  []     parent       int     n       int  [     ]     graph  )      {      Console  .  Write  (  'Edge Weightn'  );      int     minProduct     =     1  ;      for     (  int     i     =     1  ;     i      <     V  ;     i  ++  )     {      Console  .  Write  (  '{0} - {1} {2} n'        parent  [  i  ]     i       graph  [  i       parent  [  i  ]]);      minProduct     *=     graph  [  i       parent  [  i  ]];      }      Console  .  Write  (  'Minimum Obtainable product is {0}n'        minProduct  );      }      // Function to construct and print MST for a graph      // represented using adjacency matrix representation      // inputGraph is sent for printing actual edges and      // logGraph is sent for actual MST operations      static     void     primMST  (  int  [     ]     inputGraph       double  [     ]     logGraph  )      {      int  []     parent     =     new     int  [  V  ];     // Array to store constructed MST      int  []     key     =     new     int  [  V  ];     // Key values used to pick minimum      // weight edge in cut      Boolean  []     mstSet     =     new     Boolean  [  V  ];     // To represent set of vertices not      // yet included in MST      // Initialize all keys as INFINITE      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )     {      key  [  i  ]     =     int  .  MaxValue  ;      mstSet  [  i  ]     =     false  ;      }      // Always include first 1st vertex in MST.      key  [  0  ]     =     0  ;     // Make key 0 so that this vertex is      // picked as first vertex      parent  [  0  ]     =     -  1  ;     // First node is always root of MST      // The MST will have V vertices      for     (  int     count     =     0  ;     count      <     V     -     1  ;     count  ++  )     {      // Pick the minimum key vertex from the set of      // vertices not yet included in MST      int     u     =     minKey  (  key       mstSet  );      // Add the picked vertex to the MST Set      mstSet  [  u  ]     =     true  ;      // Update key value and parent index of the      // adjacent vertices of the picked vertex.      // Consider only those vertices which are not yet      // included in MST      for     (  int     v     =     0  ;     v      <     V  ;     v  ++  )     // logGraph[u v] is non zero only for      // adjacent vertices of m mstSet[v] is false      // for vertices not yet included in MST      // Update the key only if logGraph[u v] is      // smaller than key[v]      {      if     (  logGraph  [  u       v  ]     >     0      &&     mstSet  [  v  ]     ==     false      &&     logGraph  [  u       v  ]      <     key  [  v  ])     {      parent  [  v  ]     =     u  ;      key  [  v  ]     =     (  int  )  logGraph  [  u       v  ];      }      }      }      // print the constructed MST      printMST  (  parent       V       inputGraph  );      }      // Method to get minimum product spanning tree      static     void     minimumProductMST  (  int  [     ]     graph  )      {      double  [     ]     logGraph     =     new     double  [  V       V  ];      // Constructing logGraph from original graph      for     (  int     i     =     0  ;     i      <     V  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     V  ;     j  ++  )     {      if     (  graph  [  i       j  ]     >     0  )     {      logGraph  [  i       j  ]     =     Math  .  Log  (  graph  [  i       j  ]);      }      else     {      logGraph  [  i       j  ]     =     0  ;      }      }      }      // Applying standard Prim's MST algorithm on      // Log graph.      primMST  (  graph       logGraph  );      }      // Driver code      public     static     void     Main  (  String  []     args  )      {      /* Let us create the following graph    2 3    (0)--(1)--(2)    | /  |    6| 8/ 5 |7    | /  |    (3)-------(4)    9 */      int  [     ]     graph     =     {      {     0       2       0       6       0     }      {     2       0       3       8       5     }      {     0       3       0       0       7     }      {     6       8       0       0       9     }      {     0       5       7       9       0     }      };      // Print the solution      minimumProductMST  (  graph  );      }   }   /* This code contributed by PrinciRaj1992 */   
JavaScript
    <  script  >   // A Javascript program for getting minimum product   // spanning tree The program is for adjacency matrix   // representation of the graph   // Number of vertices in the graph   let     V     =     5  ;   // A utility function to find the vertex with minimum      // key value from the set of vertices not yet included      // in MST   function     minKey  (  key    mstSet  )   {      // Initialize min value      let     min     =     Number  .  MAX_VALUE       min_index     =     0  ;          for     (  let     v     =     0  ;     v      <     V  ;     v  ++  )     {      if     (  mstSet  [  v  ]     ==     false     &&     key  [  v  ]      <     min  )     {      min     =     key  [  v  ];      min_index     =     v  ;      }      }      return     min_index  ;   }   // A utility function to print the constructed MST      // stored in parent[] and print Minimum Obtainable      // product   function     printMST  (  parent    n    graph  )   {      document  .  write  (  'Edge Weight  
'
); let minProduct = 1 ; for ( let i = 1 ; i < V ; i ++ ) { document . write ( parent [ i ] + ' - ' + i + ' ' + graph [ i ][ parent [ i ]] + '
'
); minProduct *= graph [ i ][ parent [ i ]]; } document . write ( 'Minimum Obtainable product is ' minProduct + '
'
); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations function primMST ( inputGraph logGraph ) { let parent = new Array ( V ); // Array to store constructed MST let key = new Array ( V ); // Key values used to pick minimum // weight edge in cut let mstSet = new Array ( V ); // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for ( let i = 0 ; i < V ; i ++ ) { key [ i ] = Number . MAX_VALUE ; mstSet [ i ] = false ; } // Always include first 1st vertex in MST. key [ 0 ] = 0 ; // Make key 0 so that this vertex is // picked as first vertex parent [ 0 ] = - 1 ; // First node is always root of MST // The MST will have V vertices for ( let count = 0 ; count < V - 1 ; count ++ ) { // Pick the minimum key vertex from the set of // vertices not yet included in MST let u = minKey ( key mstSet ); // Add the picked vertex to the MST Set mstSet [ u ] = true ; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for ( let v = 0 ; v < V ; v ++ ) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if ( logGraph [ u ][ v ] > 0 && mstSet [ v ] == false && logGraph [ u ][ v ] < key [ v ]) { parent [ v ] = u ; key [ v ] = logGraph [ u ][ v ]; } } } // print the constructed MST printMST ( parent V inputGraph ); } // Method to get minimum product spanning tree function minimumProductMST ( graph ) { let logGraph = new Array ( V ); // Constructing logGraph from original graph for ( let i = 0 ; i < V ; i ++ ) { logGraph [ i ] = new Array ( V ); for ( let j = 0 ; j < V ; j ++ ) { if ( graph [ i ][ j ] > 0 ) { logGraph [ i ][ j ] = Math . log ( graph [ i ][ j ]); } else { logGraph [ i ][ j ] = 0 ; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST ( graph logGraph ); } // Driver code /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ let graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ]; // Print the solution minimumProductMST ( graph ); // This code is contributed by rag2127 < /script>

Išvestis:  

Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Minimum Obtainable product is 180 

The laiko sudėtingumas šio algoritmo yra O(V2), nes yra dvi įdėtos kilpoms, kurios kartojasi visose viršūnėse. 

The erdvės sudėtingumas šio algoritmo yra O(V2), nes įvesties grafikui saugoti naudojame V x V dydžio 2-D masyvą.


 

Sukurti viktoriną