Le plus grand plus ou « + » formé par tous les uns dans une matrice carrée binaire

Le plus grand plus ou « + » formé par tous les uns dans une matrice carrée binaire

Compte tenu d'un n × n matrice binaire avec composé de 0s et 1s . Votre tâche est de trouver la taille du plus grand '+' forme qui peut être formée en utilisant uniquement 1s .

signe plus

UN '+' La forme se compose d'une cellule centrale avec quatre bras s'étendant dans les quatre directions ( en haut en bas à gauche et à droite ) tout en restant dans les limites de la matrice. La taille d'un '+' est défini comme le nombre total de cellules le formant comprenant le centre et tous les bras.

La tâche est de restituer le taille maximale de tout valide '+' dans avec . Si non '+' peut être formé retour .



Exemples :

Saisir: avec = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Sortir: 9
Explication: Un « + » avec une longueur de bras de 2 (2 cellules dans chaque direction + 1 centre) peut être formé au centre du tapis.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Taille totale = (2 × 4) + 1 = 9

Saisir: avec = [ [0 1 1] [0 0 1] [1 1 1] ]
Sortir: 1
Explication: Un «+» avec une longueur de bras de 0 (0 cellule dans chaque direction + 1 centre) peut être formé avec n'importe lequel des 1.

Saisir: avec = [ [0] ]
Sortir:
Explication: Non Le signe « + » peut être formé.

[Approche naïve] - Considérez chaque point comme centre - O(n^4) Temps et O(n^4) Espace

Parcourez les cellules de la matrice une par une. Considérez chaque point parcouru comme le centre d'un plus et trouvez la taille du +. Pour chaque élément, nous parcourons la gauche, la droite, le bas et le haut. Le pire des cas dans cette solution se produit lorsque nous avons tous des 1.

[Approche attendue] - Précalculer 4 tableaux - O(n^2) Temps et O(n^2) Espace

Le idée est de maintenir quatre matrices auxiliaires gauche[][] droite[][] haut[][] bas[][] pour stocker des 1 consécutifs dans toutes les directions. Pour chaque cellule (je j) dans la matrice d'entrée, nous stockons les informations ci-dessous dans ces quatre matrices -

  • à gauche (je j) stocke le nombre maximum de 1 consécutifs dans le gauche de la cellule (i j) incluant la cellule (i j).
  • c'est vrai (je j) stocke le nombre maximum de 1 consécutifs dans le droite de la cellule (i j) incluant la cellule (i j).
  • haut (je j) stocke le nombre maximum de 1 consécutifs à haut de la cellule (i j) incluant la cellule (i j).
  • en bas (je j) stocke le nombre maximum de 1 consécutifs à bas de la cellule (i j) incluant la cellule (i j).

Après avoir calculé la valeur de chaque cellule des matrices ci-dessus, le le plus grand'+' serait formé par une cellule de matrice d'entrée qui a une valeur maximale en considérant le minimum de ( gauche (i j) droite (i j) haut (i j) bas (i j) )

Nous pouvons utiliser Programmation dynamique pour calculer le nombre total de 1 consécutifs dans toutes les directions :

si mat(i j) == 1
gauche (i j) = gauche (i j - 1) + 1

sinon gauche (i j) = 0


si mat(i j) == 1
haut(je j) = haut(je - 1 j) + 1;

sinon top(i j) = 0;


si mat(i j) == 1
bas (je j) = bas (je + 1 j) + 1;

sinon bottom(i j) = 0;


si mat(i j) == 1
droite(je j) = droite(je j + 1) + 1;

sinon c'est vrai(i j) = 0;

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus :

C++
   // C++ program to find the largest '+' in a binary matrix   // using Dynamic Programming   #include          using     namespace     std  ;   int     findLargestPlus  (  vector   <  vector   <  int  >>     &  mat  )     {          int     n     =     mat  .  size  ();          vector   <  vector   <  int  >>     left  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     right  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     top  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     bottom  (  n       vector   <  int  >  (  n       0  ));          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      left  [  i  ][  j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      right  [  i  ][  j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      int     armLength     =     min  ({  left  [  i  ][  j  ]     right  [  i  ][  j  ]      top  [  i  ][  j  ]     bottom  [  i  ][  j  ]});          maxPlusSize     =     max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;   }   int     main  ()     {          // Hardcoded input matrix      vector   <  vector   <  int  >>     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          cout      < <     findLargestPlus  (  mat  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the largest '+' in a binary matrix   // using Dynamic Programming   class   GfG     {          static     int     findLargestPlus  (  int  [][]     mat  )     {          int     n     =     mat  .  length  ;          int  [][]     left     =     new     int  [  n  ][  n  ]  ;      int  [][]     right     =     new     int  [  n  ][  n  ]  ;      int  [][]     top     =     new     int  [  n  ][  n  ]  ;      int  [][]     bottom     =     new     int  [  n  ][  n  ]  ;          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      left  [  i  ][  j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      right  [  i  ][  j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      int     armLength     =     Math  .  min  (  Math  .  min  (  left  [  i  ][  j  ]       right  [  i  ][  j  ]  )      Math  .  min  (  top  [  i  ][  j  ]       bottom  [  i  ][  j  ]  ));          maxPlusSize     =     Math  .  max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;      }      public     static     void     main  (  String  []     args  )     {          // Hardcoded input matrix      int  [][]     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          System  .  out  .  println  (  findLargestPlus  (  mat  ));      }   }   
Python
   # Python program to find the largest '+' in a binary matrix   # using Dynamic Programming   def   findLargestPlus  (  mat  ):   n   =   len  (  mat  )   left   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   right   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   top   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   bottom   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   # Fill left and top matrices   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   if   mat  [  i  ][  j  ]   ==   1  :   left  [  i  ][  j  ]   =   1   if   j   ==   0   else   left  [  i  ][  j   -   1  ]   +   1   top  [  i  ][  j  ]   =   1   if   i   ==   0   else   top  [  i   -   1  ][  j  ]   +   1   # Fill right and bottom matrices   for   i   in   range  (  n   -   1     -  1     -  1  ):   for   j   in   range  (  n   -   1     -  1     -  1  ):   if   mat  [  i  ][  j  ]   ==   1  :   right  [  i  ][  j  ]   =   1   if   j   ==   n   -   1   else   right  [  i  ][  j   +   1  ]   +   1   bottom  [  i  ][  j  ]   =   1   if   i   ==   n   -   1   else   bottom  [  i   +   1  ][  j  ]   +   1   maxPlusSize   =   0   # Compute the maximum '+' size   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   if   mat  [  i  ][  j  ]   ==   1  :   armLength   =   min  (  left  [  i  ][  j  ]   right  [  i  ][  j  ]   top  [  i  ][  j  ]   bottom  [  i  ][  j  ])   maxPlusSize   =   max  (  maxPlusSize     (  4   *   (  armLength   -   1  ))   +   1  )   return   maxPlusSize   if   __name__   ==   '__main__'  :   # Hardcoded input matrix   mat   =   [   [  0     1     1     0     1  ]   [  0     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  0     1     1     1     0  ]   ]   print  (  findLargestPlus  (  mat  ))   
C#
   // C# program to find the largest '+' in a binary matrix   // using Dynamic Programming   using     System  ;   class     GfG     {          static     int     FindLargestPlus  (  int  []     mat  )     {          int     n     =     mat  .  GetLength  (  0  );          int  []     left     =     new     int  [  n       n  ];      int  []     right     =     new     int  [  n       n  ];      int  []     top     =     new     int  [  n       n  ];      int  []     bottom     =     new     int  [  n       n  ];          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      left  [  i       j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i       j     -     1  ]     +     1  ;      top  [  i       j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1       j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      right  [  i       j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i       j     +     1  ]     +     1  ;      bottom  [  i       j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1       j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      int     armLength     =     Math  .  Min  (  Math  .  Min  (  left  [  i       j  ]     right  [  i       j  ])      Math  .  Min  (  top  [  i       j  ]     bottom  [  i       j  ]));          maxPlusSize     =     Math  .  Max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;      }      public     static     void     Main  ()     {          // Hardcoded input matrix      int  []     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          Console  .  WriteLine  (  FindLargestPlus  (  mat  ));      }   }   
JavaScript
   // JavaScript program to find the largest '+' in a binary matrix   // using Dynamic Programming   function     findLargestPlus  (  mat  )     {          let     n     =     mat  .  length  ;          let     left     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     right     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     top     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     bottom     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));          // Fill left and top matrices      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      left  [  i  ][  j  ]     =     (  j     ===     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ===     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  let     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  let     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      right  [  i  ][  j  ]     =     (  j     ===     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ===     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          let     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      let     armLength     =     Math  .  min  (  left  [  i  ][  j  ]     right  [  i  ][  j  ]      top  [  i  ][  j  ]     bottom  [  i  ][  j  ]);          maxPlusSize     =     Math  .  max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;   }   // Hardcoded input matrix   let     mat     =     [      [  0       1       1       0       1  ]      [  0       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  0       1       1       1       0  ]   ];   console  .  log  (  findLargestPlus  (  mat  ));   

Sortir
9  

Complexité temporelle : O(n²) grâce à quatre passes pour calculer les matrices directionnelles et une passe finale pour déterminer le plus grand '+'. Chaque passe prend un temps O(n²), ce qui conduit à une complexité globale de O(n²).
Complexité spatiale : O(n²) en raison de quatre matrices auxiliaires (gauche droite en haut en bas) consommant O (n²) d'espace supplémentaire.


Top Articles

Catégorie

Des Articles Intéressants