k개의 정렬된 목록에 있는 요소의 최소 범위

k개의 정렬된 목록에 있는 요소의 최소 범위
GfG Practice에서 사용해 보세요.

2차원 정수 배열이 주어지면 도착[][] 질서의 k * n 각 행의 위치 정렬됨 오름차순으로. 당신의 임무는 각 요소에서 최소한 하나의 요소를 포함하는 가장 작은 범위를 찾는 것입니다.  케이  기울기. 해당 범위가 두 개 이상 발견되면 첫 번째 범위를 반환합니다.

예:  

입력: 도착[][] = [[ 4 7 9 12 15 ]
[0 8 10 14 20]
[6 12 16 30 50 ]]
산출: 6 8
설명: 가장 작은 범위는 첫 번째 목록의 숫자 7, 두 번째 목록의 8, 세 번째 목록의 6으로 구성됩니다.

입력: arr[][] = [[ 2 4 ]
[1 7]
[20 40]]
산출: 4 20
설명: [4 20] 범위에는 세 배열 모두의 요소를 포함하는 4 7 20이 포함됩니다.

목차

[순진한 접근 방식] - K 포인터 사용 - O(n k^2) 시간 및 O(k) 공간

아이디어는 인덱스 0에서 시작하는 각 목록에 대해 k개의 포인터를 하나씩 유지하는 것입니다. 각 단계에서 최소 및 최대 현재 K개 요소를 사용하여 범위를 형성합니다. 에게 범위를 최소화하다 우리는 해야 한다 최소값을 높이세요 왜냐하면 우리는 최대값을 줄일 수 없기 때문입니다(모든 포인터는 0에서 시작합니다). 따라서 현재 최소값 범위를 업데이트합니다. 하나의 목록이 소진될 때까지 반복합니다.

단계별 구현:

  • 포인터 목록 만들기 인덱스 0에서 시작하는 각 입력 목록마다 하나씩.
  • 과정을 반복하세요 포인터 중 하나가 목록 끝에 도달할 때까지.
  • 각 단계에서 현재 요소를 선택하세요 모든 포인터가 가리킨다.
  • 찾기 최소 및 최대 그 요소들 중.
  • 범위 계산 최소값과 최대값을 사용합니다.
  • 이 범위가 더 작은 경우 이전 최고의 답변보다 업데이트하십시오.
  • 포인터를 앞으로 이동 최소 요소가 있는 목록의 목록입니다.
  • 목록이 소진되면 중지 찾은 최상의 범위를 반환합니다.
C++
   // C++ program to find the smallest range   // that includes at least one element from   // each of the k sorted lists using k pointers   #include          #include         #include         using     namespace     std  ;   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {          int     k     =     arr  .  size  ();         int     n     =     arr  [  0  ].  size  ();         // Pointers for each of the k rows      vector   <  int  >     ptr  (  k       0  );      int     minRange     =     INT_MAX  ;      int     start     =     -1       end     =     -1  ;      while     (  true  )     {      int     minVal     =     INT_MAX  ;      int     maxVal     =     INT_MIN  ;      int     minRow     =     -1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      return     {  start       end  };      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]];      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]];      }      }      // Update the result range if a       // smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the       // row with minimum value      ptr  [  minRow  ]  ++  ;      }      return     {  start       end  };   }   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     res     =     findSmallestRange  (  arr  );      cout      < <     res  [  0  ]      < <     ' '      < <     res  [  1  ];      return     0  ;   }   
Java
   // Java program to find the smallest range   import     java.util.*  ;   class   GfG  {      static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;      int     n     =     arr  [  0  ]  .  length  ;      // Pointers for each of the k rows      int  []     ptr     =     new     int  [  k  ]  ;      int     minRange     =     Integer  .  MAX_VALUE  ;      int     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      int     minVal     =     Integer  .  MAX_VALUE  ;      int     maxVal     =     Integer  .  MIN_VALUE  ;      int     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      ArrayList   <  Integer  >     result     =     new     ArrayList   <>  ();      result  .  add  (  start  );      result  .  add  (  end  );      return     result  ;      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]]  ;      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]]  ;      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]++  ;      }      }      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     res     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  res  .  get  (  0  )     +     ' '     +     res  .  get  (  1  ));      }   }   
Python
   # Python program to find the smallest range   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   n   =   len  (  arr  [  0  ])   # Pointers for each of the k rows   ptr   =   [  0  ]   *   k   min_range   =   float  (  'inf'  )   start   =   -  1   end   =   -  1   while   True  :   min_val   =   float  (  'inf'  )   max_val   =   float  (  '-inf'  )   min_row   =   -  1   # Traverse all k rows to get current min and max   for   i   in   range  (  k  ):   # If any list is exhausted stop the loop   if   ptr  [  i  ]   ==   n  :   return   [  start     end  ]   # Track min value and its row index   if   arr  [  i  ][  ptr  [  i  ]]    <   min_val  :   min_val   =   arr  [  i  ][  ptr  [  i  ]]   min_row   =   i   # Track current max value   if   arr  [  i  ][  ptr  [  i  ]]   >   max_val  :   max_val   =   arr  [  i  ][  ptr  [  i  ]]   # Update the result range if a smaller range is found   if   max_val   -   min_val    <   min_range  :   min_range   =   max_val   -   min_val   start   =   min_val   end   =   max_val   # Move the pointer of the row with minimum value   ptr  [  min_row  ]   +=   1   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   res   =   findSmallestRange  (  arr  )   print  (  res  [  0  ]   res  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GfG  {      static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );      int     n     =     arr  .  GetLength  (  1  );      // Pointers for each of the k rows      int  []     ptr     =     new     int  [  k  ];         int     minRange     =     int  .  MaxValue  ;      int     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      int     minVal     =     int  .  MaxValue  ;      int     maxVal     =     int  .  MinValue  ;      int     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ==     n  )     {      return     new     List   <  int  >     {     start       end     };      }      int     current     =     arr  [  i       ptr  [  i  ]];      if     (  current      <     minVal  )     {      minVal     =     current  ;      minRow     =     i  ;      }      if     (  current     >     maxVal  )     {      maxVal     =     current  ;      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]  ++  ;      }      }      public     static     void     Main  (  string  []     args  )     {      int  []     arr     =     {      {     4       7       9       12       15     }      {     0       8       10       14       20     }      {     6       12       16       30       50     }      };      List   <  int  >     res     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  res  [  0  ]     +     ' '     +     res  [  1  ]);      }   }   
JavaScript
   // JavaScript program to find the smallest range   function     findSmallestRange  (  arr  )     {      let     k     =     arr  .  length  ;      let     n     =     arr  [  0  ].  length  ;      // Pointers for each of the k rows      let     ptr     =     new     Array  (  k  ).  fill  (  0  );      let     minRange     =     Infinity  ;      let     start     =     -  1       end     =     -  1  ;      while     (  true  )     {      let     minVal     =     Infinity  ;      let     maxVal     =     -  Infinity  ;      let     minRow     =     -  1  ;      // Traverse all k rows to get current min and max      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      // If any list is exhausted stop the loop      if     (  ptr  [  i  ]     ===     n  )     {      return     [  start       end  ];      }      // Track min value and its row index      if     (  arr  [  i  ][  ptr  [  i  ]]      <     minVal  )     {      minVal     =     arr  [  i  ][  ptr  [  i  ]];      minRow     =     i  ;      }      // Track current max value      if     (  arr  [  i  ][  ptr  [  i  ]]     >     maxVal  )     {      maxVal     =     arr  [  i  ][  ptr  [  i  ]];      }      }      // Update the result range if a smaller range is found      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      start     =     minVal  ;      end     =     maxVal  ;      }      // Move the pointer of the row with minimum value      ptr  [  minRow  ]  ++  ;      }   }   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     res     =     findSmallestRange  (  arr  );   console  .  log  (  res  [  0  ]     +     ' '     +     res  [  1  ]);   

산출
6 8 

[더 나은 접근 방식] 두 포인터 사용 - O(n*k log (n*k)) 시간 및 O(n*k) 공간

아이디어는 입력 목록의 모든 요소를 ​​병합하고 정렬한 목록에 대한 슬라이딩 윈도우 문제로 변환하여 가장 작은 범위 문제를 찾는 것입니다. 각 요소는 원본 목록 색인과 함께 저장되어 소스를 추적합니다. 두 포인터 값을 기준으로 결합된 목록을 정렬한 후( left 그리고 right )는 목록을 통해 이동하는 창을 정의하는 데 사용됩니다. 창이 확장됨에 따라 빈도 맵은 얼마나 많은 고유 목록이 표시되는지 추적합니다. 창에 모든 목록의 숫자가 하나 이상 포함되어 있으면 알고리즘은 더 작은 유효 범위를 찾기 위해 왼쪽에서 숫자를 축소하려고 시도합니다. 이 과정에서 발견된 가장 작은 범위가 결과로 반환됩니다.

C++
   #include          using     namespace     std  ;   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {          int     k     =     arr  .  size  ();         // Stores the current index for each list      vector   <  int  >     pointers  (  k       0  );      // Stores the current smallest range      vector   <  int  >     smallestRange     =     {  0       INT_MAX  };      while     (  true  )     {      int     currentMin     =     INT_MAX       currentMax     =     INT_MIN  ;      int     minListIndex     =     -1  ;      // Find the minimum and maximum among current elements of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i  ][  pointers  [  i  ]];      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  [  minListIndex  ].  size  ())     break  ;      }      return     smallestRange  ;   }   // Driver code   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     result     =     findSmallestRange  (  arr  );      cout      < <     result  [  0  ]      < <     ' '      < <     result  [  1  ];      return     0  ;   }   
Java
   import     java.util.*  ;   class   GfG     {      // Function to find the smallest range      public     static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;     // Number of lists      // Stores the current index for each list      int  []     pointers     =     new     int  [  k  ]  ;      // Stores the current smallest range      ArrayList   <  Integer  >     smallestRange     =     new     ArrayList   <>      (  Arrays  .  asList  (  0       Integer  .  MAX_VALUE  ));      // Continue the loop until one list is exhausted      while     (  true  )     {      int     currentMin     =     Integer  .  MAX_VALUE       currentMax     =     Integer  .  MIN_VALUE  ;      int     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i  ][  pointers  [  i  ]]  ;      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  .  get  (  1  )     -     smallestRange  .  get  (  0  ))     {      smallestRange  .  set  (  0       currentMin  );      smallestRange  .  set  (  1       currentMax  );      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  [  minListIndex  ]  .  length  )     break  ;      }      return     smallestRange  ;     // Return the result as ArrayList      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     result     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  result  .  get  (  0  )     +     ' '     +     result  .  get  (  1  ));      }   }   
Python
   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   # Number of lists   # Stores the current index for each list   pointers   =   [  0  ]   *   k   # Stores the current smallest range   smallestRange   =   [  0     float  (  'inf'  )]   # Continue the loop until one list is exhausted   while   True  :   currentMin   =   float  (  'inf'  )   currentMax   =   -  float  (  'inf'  )   minListIndex   =   -  1   # Find the minimum and maximum among current elements of all lists   for   i   in   range  (  k  ):   value   =   arr  [  i  ][  pointers  [  i  ]]   # Update the current minimum   if   value    <   currentMin  :   currentMin   =   value   minListIndex   =   i   # Update the current maximum   if   value   >   currentMax  :   currentMax   =   value   # Update the smallest range if this one is smaller   if   currentMax   -   currentMin    <   smallestRange  [  1  ]   -   smallestRange  [  0  ]:   smallestRange  [  0  ]   =   currentMin   smallestRange  [  1  ]   =   currentMax   # Move the pointer in the list that had the minimum value   pointers  [  minListIndex  ]   +=   1   # If that list is exhausted break the loop   if   pointers  [  minListIndex  ]   ==   len  (  arr  [  minListIndex  ]):   break   return   smallestRange   # Return the result as a list   # Driver code   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   result   =   findSmallestRange  (  arr  )   print  (  result  [  0  ]   result  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GfG  {      // Function to find the smallest range      public     static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );     // Number of lists (rows)      // Stores the current index for each list (row)      int  []     pointers     =     new     int  [  k  ];      // Stores the current smallest range      List   <  int  >     smallestRange     =     new     List   <  int  >     {     0       int  .  MaxValue     };      // Continue the loop until one list is exhausted      while     (  true  )     {      int     currentMin     =     int  .  MaxValue       currentMax     =     int  .  MinValue  ;      int     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements       // of all lists      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      int     value     =     arr  [  i       pointers  [  i  ]];      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ==     arr  .  GetLength  (  1  ))     break  ;      }      return     smallestRange  ;     // Return the result as List        }      // Driver code      public     static     void     Main  (  string  []     args  )     {      int  []     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      List   <  int  >     result     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  result  [  0  ]     +     ' '     +     result  [  1  ]);      }   }   
JavaScript
   function     findSmallestRange  (  arr  )     {      const     k     =     arr  .  length  ;     // Number of lists      // Stores the current index for each list      let     pointers     =     new     Array  (  k  ).  fill  (  0  );      // Stores the current smallest range      let     smallestRange     =     [  0       Number  .  MAX_VALUE  ];      // Continue the loop until one list is exhausted      while     (  true  )     {      let     currentMin     =     Number  .  MAX_VALUE       currentMax     =     -  Number  .  MAX_VALUE  ;      let     minListIndex     =     -  1  ;      // Find the minimum and maximum among current elements of all lists      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      const     value     =     arr  [  i  ][  pointers  [  i  ]];      // Update the current minimum      if     (  value      <     currentMin  )     {      currentMin     =     value  ;      minListIndex     =     i  ;      }      // Update the current maximum      if     (  value     >     currentMax  )     {      currentMax     =     value  ;      }      }      // Update the smallest range if this one is smaller      if     (  currentMax     -     currentMin      <     smallestRange  [  1  ]     -     smallestRange  [  0  ])     {      smallestRange  [  0  ]     =     currentMin  ;      smallestRange  [  1  ]     =     currentMax  ;      }      // Move the pointer in the list that had the minimum value      pointers  [  minListIndex  ]  ++  ;      // If that list is exhausted break the loop      if     (  pointers  [  minListIndex  ]     ===     arr  [  minListIndex  ].  length  )     break  ;      }      return     smallestRange  ;     // Return the result as an array   }   // Driver code   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     result     =     findSmallestRange  (  arr  );   console  .  log  (  result  [  0  ]     result  [  1  ]);   

산출
6 8 

[효율적인 접근 방식] - 최소 힙 사용 - O(n k Log k) 시간 및 O(k) 공간

최소 힙 선형 시간 대신 로그 시간 또는 로그 k 시간에서 최소값을 찾는 데 사용할 수 있습니다. 최대값을 찾기 위해 처음에는 모든 0 인덱스의 최대값을 초기화합니다. 루프의 나머지 최대값에 대해서는 현재 최대값을 목록에서 최소 항목이 제거되는 다음 항목과 비교하기만 하면 됩니다. 나머지 접근 방식은 동일하게 유지됩니다. 

단계별 구현:

  • 최소 힙 선형 시간 대신 로그 시간 또는 로그 k 시간에서 최소값을 찾는 데 사용할 수 있습니다. 최대값을 찾기 위해 처음에는 모든 0 인덱스의 최대값을 초기화합니다. 루프의 나머지 최대값에 대해서는 현재 최대값을 목록에서 최소 항목이 제거되는 다음 항목과 비교하기만 하면 됩니다. 나머지 접근 방식은 동일하게 유지됩니다. 

    각 배열과 변수에서 하나씩 K개의 요소를 저장하는 최소 힙을 만듭니다. 최소 범위 최대값으로 초기화되고 변수도 유지됩니다. 최대 최대 정수를 저장합니다.

  • 최소 힙 선형 시간 대신 로그 시간 또는 로그 k 시간에서 최소값을 찾는 데 사용할 수 있습니다. 최대값을 찾기 위해 처음에는 모든 0 인덱스의 최대값을 초기화합니다. 루프의 나머지 최대값에 대해서는 현재 최대값을 목록에서 최소 항목이 제거되는 다음 항목과 비교하기만 하면 됩니다. 나머지 접근 방식은 동일하게 유지됩니다. 

    처음에는 각 목록의 첫 번째 요소를 넣고 최대값을 저장합니다. 최대 .

  • 최소 힙 선형 시간 대신 로그 시간 또는 로그 k 시간에서 최소값을 찾는 데 사용할 수 있습니다. 최대값을 찾기 위해 처음에는 모든 0 인덱스의 최대값을 초기화합니다. 루프의 나머지 최대값에 대해서는 현재 최대값을 목록에서 최소 항목이 제거되는 다음 항목과 비교하기만 하면 됩니다. 나머지 접근 방식은 동일하게 유지됩니다. 

    하나 이상의 목록이 소진될 때까지 다음 단계를 반복합니다. 

    • 최소값을 찾거나 최소 요소인 Min 힙의 최상위 또는 루트를 사용합니다.
    • 이제 업데이트하세요 최소 범위 전류(최대-최소)가 다음보다 작은 경우 최소 범위 .
    • 우선 순위 큐에서 최상위 또는 루트 요소를 제거하고 최소 요소가 포함된 목록에서 다음 요소를 삽입합니다.
    • 새 요소가 이전 최대값보다 큰 경우 삽입된 새 요소로 최대값을 업데이트합니다.
최소 힙 선형 시간 대신 로그 시간 또는 로그 k 시간에서 최소값을 찾는 데 사용할 수 있습니다. 최대값을 찾기 위해 처음에는 모든 0 인덱스의 최대값을 초기화합니다. 루프의 나머지 최대값에 대해서는 현재 최대값을 목록에서 최소 항목이 제거되는 다음 항목과 비교하기만 하면 됩니다. 나머지 접근 방식은 동일하게 유지됩니다. 

C++

   #include          using     namespace     std  ;   // Struct to represent elements in the heap   struct     Node     {      int     val       row       col  ;      bool     operator  >  (  const     Node  &     other  )     const     {      return     val     >     other  .  val  ;      }   };   // Function to find the smallest range   vector   <  int  >     findSmallestRange  (  vector   <  vector   <  int  >>&     arr  )     {      int     N     =     arr  .  size  ();     // Number of rows      int     K     =     arr  [  0  ].  size  ();     // Number of columns (same for each row)      priority_queue   <  Node       vector   <  Node  >       greater   <  Node  >>     pq  ;      int     maxVal     =     INT_MIN  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      pq  .  push  ({  arr  [  i  ][  0  ]     i       0  });      maxVal     =     max  (  maxVal       arr  [  i  ][  0  ]);      }      int     minRange     =     INT_MAX       minEl       maxEl  ;      while     (  true  )     {      Node     curr     =     pq  .  top  ();     pq  .  pop  ();      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     K  )     break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ];      pq  .  push  ({  nextVal       curr  .  row       curr  .  col     +     1  });      maxVal     =     max  (  maxVal       nextVal  );      }      return     {  minEl       maxEl  };   }   // Driver code   int     main  ()     {      vector   <  vector   <  int  >>     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      vector   <  int  >     result     =     findSmallestRange  (  arr  );      cout      < <     result  [  0  ]      < <     ' '      < <     result  [  1  ];      return     0  ;   }   
Java
   import     java.util.*  ;   // Class to represent elements in the heap   class   Node     implements     Comparable   <  Node  >     {      int     val       row       col  ;      Node  (  int     val       int     row       int     col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }      // For min-heap based on value      public     int     compareTo  (  Node     other  )     {      return     this  .  val     -     other  .  val  ;      }   }   class   GfG     {      // Function to find the smallest range      static     ArrayList   <  Integer  >     findSmallestRange  (  int  [][]     arr  )     {      int     k     =     arr  .  length  ;      int     n     =     arr  [  0  ]  .  length  ;      PriorityQueue   <  Node  >     pq     =     new     PriorityQueue   <>  ();      int     maxVal     =     Integer  .  MIN_VALUE  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      pq  .  add  (  new     Node  (  arr  [  i  ][  0  ]       i       0  ));      maxVal     =     Math  .  max  (  maxVal       arr  [  i  ][  0  ]  );      }      int     minRange     =     Integer  .  MAX_VALUE       minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      Node     curr     =     pq  .  poll  ();      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     n  )      break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ]  ;      pq  .  add  (  new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  ));      maxVal     =     Math  .  max  (  maxVal       nextVal  );      }      // Return result as ArrayList      ArrayList   <  Integer  >     result     =     new     ArrayList   <>  ();      result  .  add  (  minEl  );      result  .  add  (  maxEl  );      return     result  ;      }      // Driver code      public     static     void     main  (  String  []     args  )     {      int  [][]     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      ArrayList   <  Integer  >     res     =     findSmallestRange  (  arr  );      System  .  out  .  println  (  res  .  get  (  0  )     +     ' '     +     res  .  get  (  1  ));      }   }   
Python
   import   heapq   # Function to find the smallest range   def   findSmallestRange  (  arr  ):   k   =   len  (  arr  )   n   =   len  (  arr  [  0  ])   heap   =   []   maxVal   =   float  (  '-inf'  )   # Push the first element of each    # list into the min-heap   for   i   in   range  (  k  ):   heapq  .  heappush  (  heap     (  arr  [  i  ][  0  ]   i     0  ))   maxVal   =   max  (  maxVal     arr  [  i  ][  0  ])   minRange   =   float  (  'inf'  )   minEl   =   maxEl   =   -  1   while   True  :   minVal     row     col   =   heapq  .  heappop  (  heap  )   # Update range if better   if   maxVal   -   minVal    <   minRange  :   minRange   =   maxVal   -   minVal   minEl   =   minVal   maxEl   =   maxVal   # If we've reached the end of a list break   if   col   +   1   ==   n  :   break   # Push next element from the same list   nextVal   =   arr  [  row  ][  col   +   1  ]   heapq  .  heappush  (  heap     (  nextVal     row     col   +   1  ))   maxVal   =   max  (  maxVal     nextVal  )   return   [  minEl     maxEl  ]   # Driver code   if   __name__   ==   '__main__'  :   arr   =   [   [  4     7     9     12     15  ]   [  0     8     10     14     20  ]   [  6     12     16     30     50  ]   ]   res   =   findSmallestRange  (  arr  )   print  (  res  [  0  ]   res  [  1  ])   
C#
   using     System  ;   using     System.Collections.Generic  ;   // Class to represent elements in the heap   class     Node     :     IComparable   <  Node  >     {      public     int     val       row       col  ;      public     Node  (  int     val       int     row       int     col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }      // For min-heap based on value      public     int     CompareTo  (  Node     other  )     {      if     (  this  .  val     !=     other  .  val  )      return     this  .  val  .  CompareTo  (  other  .  val  );      // To avoid duplicate keys in SortedSet      if     (  this  .  row     !=     other  .  row  )      return     this  .  row  .  CompareTo  (  other  .  row  );      return     this  .  col  .  CompareTo  (  other  .  col  );      }   }   class     GfG     {      // Function to find the smallest range      static     List   <  int  >     findSmallestRange  (  int  []     arr  )     {      int     k     =     arr  .  GetLength  (  0  );      int     n     =     arr  .  GetLength  (  1  );      var     pq     =     new     SortedSet   <  Node  >  ();      int     maxVal     =     int  .  MinValue  ;      // Push the first element of each list into the min-heap      for     (  int     i     =     0  ;     i      <     k  ;     i  ++  )     {      var     node     =     new     Node  (  arr  [  i       0  ]     i       0  );      pq  .  Add  (  node  );      maxVal     =     Math  .  Max  (  maxVal       arr  [  i       0  ]);      }      int     minRange     =     int  .  MaxValue       minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      var     curr     =     GetMin  (  pq  );      pq  .  Remove  (  curr  );      int     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ==     n  )      break  ;      // Push next element from the same list      int     nextVal     =     arr  [  curr  .  row       curr  .  col     +     1  ];      var     nextNode     =     new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  );      pq  .  Add  (  nextNode  );      maxVal     =     Math  .  Max  (  maxVal       nextVal  );      }      return     new     List   <  int  >     {     minEl       maxEl     };     // Return result as List        }      // Helper to get the minimum element (first element in SortedSet)      static     Node     GetMin  (  SortedSet   <  Node  >     pq  )     {      foreach     (  var     node     in     pq  )      return     node  ;      return     null  ;      }      // Driver code      static     void     Main  ()     {      int  []     arr     =     {      {  4       7       9       12       15  }      {  0       8       10       14       20  }      {  6       12       16       30       50  }      };      List   <  int  >     res     =     findSmallestRange  (  arr  );      Console  .  WriteLine  (  res  [  0  ]     +     ' '     +     res  [  1  ]);      }   }   
JavaScript
   class     Node     {      constructor  (  val       row       col  )     {      this  .  val     =     val  ;      this  .  row     =     row  ;      this  .  col     =     col  ;      }   }   // Function to find the smallest range   function     findSmallestRange  (  arr  )     {      const     k     =     arr  .  length  ;      const     n     =     arr  [  0  ].  length  ;      const     heap     =     new     MinHeap  ();      let     maxVal     =     -  Infinity  ;      // Push the first element of each list into the min-heap      for     (  let     i     =     0  ;     i      <     k  ;     i  ++  )     {      heap  .  push  (  new     Node  (  arr  [  i  ][  0  ]     i       0  ));      maxVal     =     Math  .  max  (  maxVal       arr  [  i  ][  0  ]);      }      let     minRange     =     Infinity  ;      let     minEl     =     -  1       maxEl     =     -  1  ;      while     (  true  )     {      const     curr     =     heap  .  pop  ();      const     minVal     =     curr  .  val  ;      // Update range if better      if     (  maxVal     -     minVal      <     minRange  )     {      minRange     =     maxVal     -     minVal  ;      minEl     =     minVal  ;      maxEl     =     maxVal  ;      }      // If we've reached the end of a list break      if     (  curr  .  col     +     1     ===     n  )     break  ;      // Push next element from the same list      const     nextVal     =     arr  [  curr  .  row  ][  curr  .  col     +     1  ];      heap  .  push  (  new     Node  (  nextVal       curr  .  row       curr  .  col     +     1  ));      maxVal     =     Math  .  max  (  maxVal       nextVal  );      }      return     [  minEl       maxEl  ];   }   // Min-heap comparator   class     MinHeap     {      constructor  ()     {      this  .  heap     =     [];      }      push  (  node  )     {      this  .  heap  .  push  (  node  );      this  .  _heapifyUp  ();      }      pop  ()     {      if     (  this  .  size  ()     ===     1  )     return     this  .  heap  .  pop  ();      const     top     =     this  .  heap  [  0  ];      this  .  heap  [  0  ]     =     this  .  heap  .  pop  ();      this  .  _heapifyDown  ();      return     top  ;      }      top  ()     {      return     this  .  heap  [  0  ];      }      size  ()     {      return     this  .  heap  .  length  ;      }      _heapifyUp  ()     {      let     idx     =     this  .  size  ()     -     1  ;      while     (  idx     >     0  )     {      let     parent     =     Math  .  floor  ((  idx     -     1  )     /     2  );      if     (  this  .  heap  [  parent  ].  val      <=     this  .  heap  [  idx  ].  val  )     break  ;      [  this  .  heap  [  parent  ]     this  .  heap  [  idx  ]]     =     [  this  .  heap  [  idx  ]     this  .  heap  [  parent  ]];      idx     =     parent  ;      }      }      _heapifyDown  ()     {      let     idx     =     0  ;      const     n     =     this  .  size  ();      while     (  true  )     {      let     left     =     2     *     idx     +     1  ;      let     right     =     2     *     idx     +     2  ;      let     smallest     =     idx  ;      if     (  left      <     n     &&     this  .  heap  [  left  ].  val      <     this  .  heap  [  smallest  ].  val  )     {      smallest     =     left  ;      }      if     (  right      <     n     &&     this  .  heap  [  right  ].  val      <     this  .  heap  [  smallest  ].  val  )     {      smallest     =     right  ;      }      if     (  smallest     ===     idx  )     break  ;      [  this  .  heap  [  smallest  ]     this  .  heap  [  idx  ]]     =     [  this  .  heap  [  idx  ]     this  .  heap  [  smallest  ]];      idx     =     smallest  ;      }      }   }   // Driver code   const     arr     =     [      [  4       7       9       12       15  ]      [  0       8       10       14       20  ]      [  6       12       16       30       50  ]   ];   const     res     =     findSmallestRange  (  arr  );   console  .  log  (  res  [  0  ]     +     ' '     +     res  [  1  ]);   

산출
6 8