이진 정사각형 행렬의 모든 1로 구성된 가장 큰 플러스 또는 '+'

이진 정사각형 행렬의 모든 1로 구성된 가장 큰 플러스 또는 '+'

주어진 n × n 함께 로 구성된 0초 그리고 1초 . 당신의 임무는 가장 큰 크기를 찾는 것입니다 '+' 만으로 만들 수 있는 모양 1초 .

더하기 기호

에이 '+' 모양은 네 방향으로 뻗어 있는 네 개의 팔이 있는 중앙 셀로 구성됩니다( 위 아래 왼쪽 오른쪽 ) 매트릭스 경계 내에 남아 있습니다. 크기 '+' 는 다음과 같이 정의됩니다. 총 셀 수 중앙과 모든 팔을 포함하여 형성됩니다.

임무는 반환하는 것입니다. 최대 크기 유효한 '+' ~에 함께 . 그렇지 않은 경우 '+' 반환을 형성할 수 있습니다 .

예:

입력: = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
산출: 9
설명: 매트 중앙에는 암 길이 2(각 방향 2셀 + 중앙 1)인 '+'를 형성할 수 있습니다.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
전체 크기 = (2 × 4) + 1 = 9

입력: = [ [0 1 1] [0 0 1] [1 1 1] ]
산출: 1
설명: 팔 길이가 0인 '+'(각 방향의 셀 0개 + 중심 1개)는 1 중 하나로 형성될 수 있습니다.

입력: = [ [0] ]
산출:
설명: 아니요 '+' 기호를 형성할 수 있습니다.

[순진한 접근 방식] - 모든 점을 중심으로 간주 - O(n^4) 시간 및 O(n^4) 공간

매트릭스 셀을 하나씩 통과합니다. 모든 통과 지점을 플러스의 중심으로 간주하고 +의 크기를 찾습니다. 모든 요소에 대해 왼쪽 오른쪽 아래 및 위로 이동합니다. 이 솔루션에서 최악의 경우는 모두 1일 때 발생합니다.

[예상 접근 방식] - 4개의 배열을 미리 계산 - O(n^2) 시간 및 O(n^2) 공간

그만큼 아이디어 4개의 보조 행렬을 유지하는 것입니다 왼쪽[][] 오른쪽[][] 위쪽[][] 아래쪽[][] 모든 방향에서 연속된 1을 저장합니다. 각 셀에 대해 (나는 j) 입력 행렬에서 우리는 아래에 정보를 저장합니다. 행렬 -

  • 왼쪽(i j) 연속된 1의 최대 개수를 왼쪽 셀(i j)을 포함하는 셀(i j)의.
  • 그렇죠(i j) 연속된 1의 최대 개수를 오른쪽 셀(i j)을 포함하는 셀(i j)의.
  • 탑(i j) 연속된 1의 최대 수를 저장합니다. 맨 위 셀(i j)을 포함하는 셀(i j)의.
  • 바닥(i j) 연속된 1의 최대 수를 저장합니다. 맨 아래 셀(i j)을 포함하는 셀(i j)의.

위 행렬의 각 셀에 대한 값을 계산한 후 가장 큰'+' 의 최소값을 고려하여 최대값을 갖는 입력 행렬의 셀로 구성됩니다. 왼쪽(i j) 오른쪽(i j) 위쪽(i j) 아래쪽(i j) )

우리는 사용할 수 있습니다 동적 프로그래밍 모든 방향에서 연속된 1의 총 개수를 계산하려면 다음을 수행하세요.

mat(i j) == 1인 경우
왼쪽(i j) = 왼쪽(i j - 1) + 1

그렇지 않으면 왼쪽(i j) = 0


mat(i j) == 1인 경우
상단(i j) = 상단(i - 1 j) + 1;

그렇지 않으면 top(i j) = 0;


mat(i j) == 1인 경우
하단(i j) = 하단(i + 1 j) + 1;

그렇지 않으면 하단(i j) = 0;


mat(i j) == 1인 경우
오른쪽(i j) = 오른쪽(i j + 1) + 1;

그렇지 않으면 right(i j) = 0;

다음은 위의 접근 방식을 구현한 것입니다.

C++
   // C++ program to find the largest '+' in a binary matrix   // using Dynamic Programming   #include          using     namespace     std  ;   int     findLargestPlus  (  vector   <  vector   <  int  >>     &  mat  )     {          int     n     =     mat  .  size  ();          vector   <  vector   <  int  >>     left  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     right  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     top  (  n       vector   <  int  >  (  n       0  ));      vector   <  vector   <  int  >>     bottom  (  n       vector   <  int  >  (  n       0  ));          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      left  [  i  ][  j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      right  [  i  ][  j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      int     armLength     =     min  ({  left  [  i  ][  j  ]     right  [  i  ][  j  ]      top  [  i  ][  j  ]     bottom  [  i  ][  j  ]});          maxPlusSize     =     max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;   }   int     main  ()     {          // Hardcoded input matrix      vector   <  vector   <  int  >>     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          cout      < <     findLargestPlus  (  mat  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the largest '+' in a binary matrix   // using Dynamic Programming   class   GfG     {          static     int     findLargestPlus  (  int  [][]     mat  )     {          int     n     =     mat  .  length  ;          int  [][]     left     =     new     int  [  n  ][  n  ]  ;      int  [][]     right     =     new     int  [  n  ][  n  ]  ;      int  [][]     top     =     new     int  [  n  ][  n  ]  ;      int  [][]     bottom     =     new     int  [  n  ][  n  ]  ;          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      left  [  i  ][  j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      right  [  i  ][  j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ==     1  )     {      int     armLength     =     Math  .  min  (  Math  .  min  (  left  [  i  ][  j  ]       right  [  i  ][  j  ]  )      Math  .  min  (  top  [  i  ][  j  ]       bottom  [  i  ][  j  ]  ));          maxPlusSize     =     Math  .  max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;      }      public     static     void     main  (  String  []     args  )     {          // Hardcoded input matrix      int  [][]     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          System  .  out  .  println  (  findLargestPlus  (  mat  ));      }   }   
Python
   # Python program to find the largest '+' in a binary matrix   # using Dynamic Programming   def   findLargestPlus  (  mat  ):   n   =   len  (  mat  )   left   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   right   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   top   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   bottom   =   [[  0  ]   *   n   for   i   in   range  (  n  )]   # Fill left and top matrices   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   if   mat  [  i  ][  j  ]   ==   1  :   left  [  i  ][  j  ]   =   1   if   j   ==   0   else   left  [  i  ][  j   -   1  ]   +   1   top  [  i  ][  j  ]   =   1   if   i   ==   0   else   top  [  i   -   1  ][  j  ]   +   1   # Fill right and bottom matrices   for   i   in   range  (  n   -   1     -  1     -  1  ):   for   j   in   range  (  n   -   1     -  1     -  1  ):   if   mat  [  i  ][  j  ]   ==   1  :   right  [  i  ][  j  ]   =   1   if   j   ==   n   -   1   else   right  [  i  ][  j   +   1  ]   +   1   bottom  [  i  ][  j  ]   =   1   if   i   ==   n   -   1   else   bottom  [  i   +   1  ][  j  ]   +   1   maxPlusSize   =   0   # Compute the maximum '+' size   for   i   in   range  (  n  ):   for   j   in   range  (  n  ):   if   mat  [  i  ][  j  ]   ==   1  :   armLength   =   min  (  left  [  i  ][  j  ]   right  [  i  ][  j  ]   top  [  i  ][  j  ]   bottom  [  i  ][  j  ])   maxPlusSize   =   max  (  maxPlusSize     (  4   *   (  armLength   -   1  ))   +   1  )   return   maxPlusSize   if   __name__   ==   '__main__'  :   # Hardcoded input matrix   mat   =   [   [  0     1     1     0     1  ]   [  0     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  0     1     1     1     0  ]   ]   print  (  findLargestPlus  (  mat  ))   
C#
   // C# program to find the largest '+' in a binary matrix   // using Dynamic Programming   using     System  ;   class     GfG     {          static     int     FindLargestPlus  (  int  []     mat  )     {          int     n     =     mat  .  GetLength  (  0  );          int  []     left     =     new     int  [  n       n  ];      int  []     right     =     new     int  [  n       n  ];      int  []     top     =     new     int  [  n       n  ];      int  []     bottom     =     new     int  [  n       n  ];          // Fill left and top matrices      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      left  [  i       j  ]     =     (  j     ==     0  )     ?     1     :     left  [  i       j     -     1  ]     +     1  ;      top  [  i       j  ]     =     (  i     ==     0  )     ?     1     :     top  [  i     -     1       j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      right  [  i       j  ]     =     (  j     ==     n     -     1  )     ?     1     :     right  [  i       j     +     1  ]     +     1  ;      bottom  [  i       j  ]     =     (  i     ==     n     -     1  )     ?     1     :     bottom  [  i     +     1       j  ]     +     1  ;      }      }      }          int     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i       j  ]     ==     1  )     {      int     armLength     =     Math  .  Min  (  Math  .  Min  (  left  [  i       j  ]     right  [  i       j  ])      Math  .  Min  (  top  [  i       j  ]     bottom  [  i       j  ]));          maxPlusSize     =     Math  .  Max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;      }      public     static     void     Main  ()     {          // Hardcoded input matrix      int  []     mat     =     {      {  0       1       1       0       1  }      {  0       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  0       1       1       1       0  }      };          Console  .  WriteLine  (  FindLargestPlus  (  mat  ));      }   }   
JavaScript
   // JavaScript program to find the largest '+' in a binary matrix   // using Dynamic Programming   function     findLargestPlus  (  mat  )     {          let     n     =     mat  .  length  ;          let     left     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     right     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     top     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));      let     bottom     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  0  ));          // Fill left and top matrices      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      left  [  i  ][  j  ]     =     (  j     ===     0  )     ?     1     :     left  [  i  ][  j     -     1  ]     +     1  ;      top  [  i  ][  j  ]     =     (  i     ===     0  )     ?     1     :     top  [  i     -     1  ][  j  ]     +     1  ;      }      }      }          // Fill right and bottom matrices      for     (  let     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  let     j     =     n     -     1  ;     j     >=     0  ;     j  --  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      right  [  i  ][  j  ]     =     (  j     ===     n     -     1  )     ?     1     :     right  [  i  ][  j     +     1  ]     +     1  ;      bottom  [  i  ][  j  ]     =     (  i     ===     n     -     1  )     ?     1     :     bottom  [  i     +     1  ][  j  ]     +     1  ;      }      }      }          let     maxPlusSize     =     0  ;          // Compute the maximum '+' size      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     n  ;     j  ++  )     {      if     (  mat  [  i  ][  j  ]     ===     1  )     {      let     armLength     =     Math  .  min  (  left  [  i  ][  j  ]     right  [  i  ][  j  ]      top  [  i  ][  j  ]     bottom  [  i  ][  j  ]);          maxPlusSize     =     Math  .  max  (  maxPlusSize        (  4     *     (  armLength     -     1  ))     +     1  );      }      }      }          return     maxPlusSize  ;   }   // Hardcoded input matrix   let     mat     =     [      [  0       1       1       0       1  ]      [  0       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  0       1       1       1       0  ]   ];   console  .  log  (  findLargestPlus  (  mat  ));   

산출
9  

시간 복잡도: O(n²) 방향 행렬을 계산하기 위한 4개의 패스와 가장 큰 '+'를 결정하기 위한 1개의 최종 패스로 인해 발생합니다. 각 패스에는 O(n²) 시간이 걸리므로 전체 복잡성은 O(n²)입니다.
공간 복잡도: O(n²) 4개의 보조 행렬(왼쪽 오른쪽 위 아래)이 O(n²) 추가 공간을 소비하기 때문입니다.