最小数の正方形にカットされた紙

最小数の正方形にカットされた紙

寸法を記した長方形の紙が与えられると、 a×b 。タスクは、紙全体を切り取ることです。 最小 の数 四角 個。任意のサイズの正方形のピースを選択できますが、カットする必要があります 重なったり余分なスペースを残さずに

例:  

入力: a = 5 b = 8



最小マス数1にカットする紙サイズ 5 X 8 の紙から切り取った 5 つの正方形

出力: 5
説明: 紙を 5 つの正方形にカットできます: サイズ 5x5 の正方形 1 つ、サイズ 3x3 の正方形 1 つ、サイズ 2x2 の正方形 1 つ、サイズ 1x1 の正方形 2 つ。

入力: a = 13 b = 11

最小マス数2の紙切りサイズ13 X 11の紙から6つの正方形を切り取ります。

出力: 6
説明: 紙を6つの正方形に切ることができます: サイズ7x7の正方形1つ、サイズ6x6の正方形1つ、サイズ5x5の正方形1つ、サイズ4x4の正方形2つ、サイズ1x1の正方形1つ。

入力: a = 6 b = 7

最小マス数3の紙切りサイズ6 X 7の紙から5つの正方形を切り取ります。

出力: 5
説明: 紙を5つの正方形に切ることができます:サイズ4x4の正方形1つ、サイズ3x3の正方形2つ、サイズ3x3の正方形2つ。

目次

【間違ったやり方1】欲張りな手法を使う

一見すると、最初に紙から可能な限り大きな正方形を切り取り、次に残りの紙から最大の正方形を切り取り、紙全体を切り取るまで同様に繰り返すことで、この問題は簡単に解決できるように思えるかもしれません。しかし、この解決策は間違っています。

なぜ貪欲なアプローチはうまくいかないのでしょうか?

適切なサイズの紙を検討してください 6×7 貪欲に紙を切ろうとすると、 7 正方形: 1 正方形の大きさ 6x6 サイズは6マス 1x1 一方、正しい解決策は次のとおりです。 5. したがって、貪欲なアプローチは機能しません。

[間違ったアプローチ 2] 動的プログラミングを使用する

動的プログラミング 垂直または水平のカットの場合: 正しいと思われる別の解決策は、 動的プログラミング 。次のような dp[][] テーブルを維持できます。 dp[i][j] = あるサイズの紙から切り取れる正方形の最小数 i×j 。次に、サイズの紙について アクサ

  • 各行に沿って切り取ってみることができます。 dp[i][j] = min(dp[i][j] 1 + dp[i - k][j] + dp[k][j]) ここで、k は [1 i - 1] の範囲内にあります。
  • 各列に沿って切り取ってみることができます。 dp[i][j] = min(dp[i][j] 1 + dp[i][j - k] + dp[i][k]) ここで、k は [1 j - 1] の範囲内にあります。

最後に、すべてのカットの最小値が答えになります。しかし、この解決策も間違っています。

動的プログラミングアプローチによる垂直または水平の切断が機能しないのはなぜですか?

これは機能しません。垂直または水平のカットによって常に長方形が 2 つの部分に分割されると想定しているためです。適切なサイズの紙を検討してください 13x11 次に、DP アプローチを使用して紙を切ろうとすると、8 つの正方形が得られますが、正解は (例に示すように) 6 です。したがって、動的計画法は機能しません。

[正しいアプローチ] DFS と動的プログラミングの使用

アイデア を使用して紙全体をカットすることです DFS ボトムアップ やり方。すべてのステップで、紙の左下隅を見つけて、その隅から可能な限りすべてのサイズの正方形を切り取ってみてください。正方形を切り取った後、もう一度残りの紙の左下隅を見つけて、可能なすべてのサイズの正方形を切り取ります。しかし、考えられるすべての用紙サイズの左下隅から可能な限りすべてのカットを試みると、非常に非効率になります。を使用して最適化できます 動的プログラミング 可能な各用紙サイズの最小カットを保存します。

用紙サイズを一意に識別するために、remSq[i] が用紙の i 番目の列にサイズ 1x1 の残りの正方形の数を格納するように、remSq[] 配列を維持できます。したがって、サイズ 6x7 の紙の場合、remSq[] = {6 6 6 6 6 6 6} となります。また、左下隅を見つけるために、残りの最大の正方形を持つ最初のインデックスを見つけます。したがって、remSq[] 配列の値をハッシュして、remSq[] 配列のすべての可能な値の一意のキーを見つけることができます。

C++
   // C++ Program to find minimum number of squares to cut   // from a paper of size axb   #include          using     namespace     std  ;   // function to get the hash key for remSq array   int     getKey  (  vector   <  int  >     &  remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )      {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   int     minCutUtil  (  vector   <  int  >     &  remSq       int     a       int     b           map   <  int       int  >     &  memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  find  (  key  )     !=     memo  .  end  ())      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      vector   <  int  >     newRemSq     =     remSq  ;      int     ans     =     INT_MAX  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||         newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      return     memo  [  key  ]     =     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      vector   <  int  >     remSq  (  b       a  );      map   <  int       int  >     memo  ;      return     minCutUtil  (  remSq       a       b       memo  );   }   int     main  ()     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      cout      < <     minCut  (  a       b  );      return     0  ;   }   
Java
   // Java Program to find minimum number of squares to cut   // from a paper of size axb   import     java.util.*  ;   class   GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Map   <  Integer       Integer  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  containsKey  (  key  ))      return     memo  .  get  (  key  );      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ]  ;      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     Arrays  .  copyOf  (  remSq       b  );      int     ans     =     Integer  .  MAX_VALUE  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  .  put  (  key       ans  );      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ]  ;      Arrays  .  fill  (  remSq       a  );      Map   <  Integer       Integer  >     memo     =     new     HashMap   <>  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      public     static     void     main  (  String  []     args  )     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      System  .  out  .  println  (  minCut  (  a       b  ));      }   }   
Python
   # Python Program to find minimum number of squares to cut   # from a paper of size axb   # function to get the hash key for remSq array   def   getKey  (  remSq     b  ):   base   =   1   key   =   0   for   i   in   range  (  b  ):   key   +=   remSq  [  i  ]   *   base   base   =   base   *   (  b   +   1  )   return   key   # Recursive function to find the minimum number of square cuts   # for a given remSq array   def   minCutUtil  (  remSq     a     b     memo  ):   # pointers to mark the start and end of range    # with maximum remaining squares   start   =   0   # Check if we have previously calculated the answer   # for the same state   key   =   getKey  (  remSq     b  )   if   key   in   memo  :   return   memo  [  key  ]   maxRemSq   =   0   # Find the starting point of min height   for   i   in   range  (  b  ):   if   remSq  [  i  ]   >   maxRemSq  :   maxRemSq   =   remSq  [  i  ]   start   =   i   # If max remaining squares = 0 then we have already   # cut the entire paper   if   maxRemSq   ==   0  :   return   0   end   =   start   newRemSq   =   remSq  [:]   ans   =   float  (  'inf'  )   # Find the ending point of min height   while   end    <   b  :   # length of edge of square from start till current end   squareEdge   =   end   -   start   +   1   # If the current column does not have maximum remaining   # squares or if it's impossible to cut a square of   # size squareEdge then break out of the loop   if   newRemSq  [  end  ]   !=   maxRemSq   or    newRemSq  [  end  ]   -   squareEdge    <   0  :   break   # If we can cut a square of size squareEdge    # update the remainingSquares   for   i   in   range  (  start     end   +   1  ):   newRemSq  [  i  ]   =   maxRemSq   -   squareEdge   # Find the solution for new remainingSquares   ans   =   min  (  ans     1   +   minCutUtil  (  newRemSq     a     b     memo  ))   end   +=   1   memo  [  key  ]   =   ans   return   ans   # Function to find the minimum number of squares we can cut    # using paper of size a X b   def   minCut  (  a     b  ):   # if the given rectangle is a square   if   a   ==   b  :   return   1   # Initialize remaining squares = a for all the b columns   remSq   =   [  a  ]   *   b   memo   =   {}   return   minCutUtil  (  remSq     a     b     memo  )   if   __name__   ==   '__main__'  :   # Sample Input   a   =   13   b   =   11   # Function call to get minimum number    # of squares for axb   print  (  minCut  (  a     b  ))   
C#
   // C# Program to find minimum number of squares to cut   // from a paper of size axb   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     baseVal     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     baseVal  );      baseVal     =     baseVal     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Dictionary   <  int       int  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  ContainsKey  (  key  ))      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     (  int  [])  remSq  .  Clone  ();      int     ans     =     int  .  MaxValue  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  Min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ];      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     remSq  [  i  ]     =     a  ;      Dictionary   <  int       int  >     memo     =     new     Dictionary   <  int       int  >  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      static     void     Main  ()     {      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      Console  .  WriteLine  (  minCut  (  a       b  ));      }   }   
JavaScript
   // JavaScript Program to find minimum number of squares to cut   // from a paper of size axb   // function to get the hash key for remSq array   function     getKey  (  remSq       b  )     {      let     base     =     1  ;      let     key     =     0  ;      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   function     minCutUtil  (  remSq       a       b       memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      let     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      let     key     =     getKey  (  remSq       b  );      if     (  key     in     memo  )      return     memo  [  key  ];      let     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ===     0  )      return     0  ;      end     =     start  ;      let     newRemSq     =     remSq  .  slice  ();      let     ans     =     Infinity  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      let     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !==     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  let     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   function     minCut  (  a       b  )     {      // if the given rectangle is a square      if     (  a     ===     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      let     remSq     =     new     Array  (  b  ).  fill  (  a  );      let     memo     =     {};      return     minCutUtil  (  remSq       a       b       memo  );   }   // Driver Code   let     a     =     13       b     =     11  ;   // Function call to get minimum number    // of squares for axb   console  .  log  (  minCut  (  a       b  ));   

出力
6 

時間計算量: O(a^b) b 列のそれぞれに正方形を含めることができます。
補助スペース: O(a^b) それぞれの一意の状態を保存するメモ化によるものです。


トップ記事

カテゴリ

興味深い記事