部分配列が山の形になっているかどうかを調べる
GfG Practice で試してみる
#practiceLinkDiv { 表示: なし !重要; }
#practiceLinkDiv { 表示: なし !重要; } 整数の配列と範囲が与えられ、この範囲に該当する部分配列が山の形の値を持つかどうかを見つける必要があります。すべての値が増加または減少している場合、または最初に増加してから減少している場合、部分配列のすべての値は山の形であると言われます。
より正式には部分配列 [a1 a2 a3…aN] 整数 K 1 が存在する場合、それは山の形であると言われます <= K <= N such that
a1 <= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …。 >= aN
例:
Input : Arr[] = [2 3 2 4 4 6 3 2] Range = [0 2] Output : Yes Explanation: The output is yes subarray is [2 3 2] so subarray first increases and then decreases Input: Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7] Output: Yes Explanation: The output is yes subarray is [2 4 4 6 3 2] so subarray first increases and then decreases Input: Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3] Output: no Explanation: The output is no subarray is [3 2 4] so subarray is not in the form above statedRecommended Practice 山の部分配列問題 試してみてください!
解決:
- 余分な長さのスペースを 2 つ作成します n 左 そして 右 そして追加の変数 最後のptr
- 初期化する 左[0] = 0 および 最後のptr = 0
- 元の配列を 2 番目のインデックスから最後まで走査します。
- すべてのインデックスについて、前の要素よりも大きいかどうかを確認し、そうであれば、インデックスを更新します。 最後のptr 現在のインデックスを使用します。
- すべてのインデックス ストアに対して、 最後のptr で 左[i]
- 初期化する 右[N-1] = N-1 および 最後のptr = N-1
- 元の配列を最後から 2 番目のインデックスから先頭まで走査します
- すべてのインデックスについて、そのインデックスが次の要素より大きいかどうかを確認し、そうであれば、インデックスを更新します。 最後のptr 現在のインデックスを使用します。
- すべてのインデックス ストアに対して、 最後のptr で そう[i]
- 次にクエリを処理します
- あらゆるクエリに対して l r もし 右[l] >= 左[r] それから印刷します はい それ以外 いいえ
// C++ program to check whether a subarray is in // mountain form or not #include using namespace std ; // Utility method to construct left and right array int preprocess ( int arr [] int N int left [] int right []) { // Initialize first left index as that index only left [ 0 ] = 0 ; int lastIncr = 0 ; for ( int i = 1 ; i < N ; i ++ ) { // if current value is greater than previous // update last increasing if ( arr [ i ] > arr [ i - 1 ]) lastIncr = i ; left [ i ] = lastIncr ; } // Initialize last right index as that index only right [ N - 1 ] = N - 1 ; int firstDecr = N - 1 ; for ( int i = N - 2 ; i >= 0 ; i -- ) { // if current value is greater than next // update first decreasing if ( arr [ i ] > arr [ i + 1 ]) firstDecr = i ; right [ i ] = firstDecr ; } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm ( int arr [] int left [] int right [] int L int R ) { // return true only if right at starting range is // greater than left at ending range return ( right [ L ] >= left [ R ]); } // Driver code to test above methods int main () { int arr [] = { 2 3 2 4 4 6 3 2 }; int N = sizeof ( arr ) / sizeof ( int ); int left [ N ] right [ N ]; preprocess ( arr N left right ); int L = 0 ; int R = 2 ; if ( isSubarrayMountainForm ( arr left right L R )) cout < < 'Subarray is in mountain form n ' ; else cout < < 'Subarray is not in mountain form n ' ; L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) cout < < 'Subarray is in mountain form n ' ; else cout < < 'Subarray is not in mountain form n ' ; return 0 ; }
Java // Java program to check whether a subarray is in // mountain form or not class SubArray { // Utility method to construct left and right array static void preprocess ( int arr [] int N int left [] int right [] ) { // initialize first left index as that index only left [ 0 ] = 0 ; int lastIncr = 0 ; for ( int i = 1 ; i < N ; i ++ ) { // if current value is greater than previous // update last increasing if ( arr [ i ] > arr [ i - 1 ] ) lastIncr = i ; left [ i ] = lastIncr ; } // initialize last right index as that index only right [ N - 1 ] = N - 1 ; int firstDecr = N - 1 ; for ( int i = N - 2 ; i >= 0 ; i -- ) { // if current value is greater than next // update first decreasing if ( arr [ i ] > arr [ i + 1 ] ) firstDecr = i ; right [ i ] = firstDecr ; } } // method returns true if arr[L..R] is in mountain form static boolean isSubarrayMountainForm ( int arr [] int left [] int right [] int L int R ) { // return true only if right at starting range is // greater than left at ending range return ( right [ L ] >= left [ R ] ); } public static void main ( String [] args ) { int arr [] = { 2 3 2 4 4 6 3 2 }; int N = arr . length ; int left [] = new int [ N ] ; int right [] = new int [ N ] ; preprocess ( arr N left right ); int L = 0 ; int R = 2 ; if ( isSubarrayMountainForm ( arr left right L R )) System . out . println ( 'Subarray is in mountain form' ); else System . out . println ( 'Subarray is not in mountain form' ); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) System . out . println ( 'Subarray is in mountain form' ); else System . out . println ( 'Subarray is not in mountain form' ); } } // This Code is Contributed by Saket Kumar
Python3 # Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess ( arr N left right ): # initialize first left index as that index only left [ 0 ] = 0 lastIncr = 0 for i in range ( 1 N ): # if current value is greater than previous # update last increasing if ( arr [ i ] > arr [ i - 1 ]): lastIncr = i left [ i ] = lastIncr # initialize last right index as that index only right [ N - 1 ] = N - 1 firstDecr = N - 1 i = N - 2 while ( i >= 0 ): # if current value is greater than next # update first decreasing if ( arr [ i ] > arr [ i + 1 ]): firstDecr = i right [ i ] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm ( arr left right L R ): # return true only if right at starting range is # greater than left at ending range return ( right [ L ] >= left [ R ]) # Driver code if __name__ == '__main__' : arr = [ 2 3 2 4 4 6 3 2 ] N = len ( arr ) left = [ 0 for i in range ( N )] right = [ 0 for i in range ( N )] preprocess ( arr N left right ) L = 0 R = 2 if ( isSubarrayMountainForm ( arr left right L R )): print ( 'Subarray is in mountain form' ) else : print ( 'Subarray is not in mountain form' ) L = 1 R = 3 if ( isSubarrayMountainForm ( arr left right L R )): print ( 'Subarray is in mountain form' ) else : print ( 'Subarray is not in mountain form' ) # This code is contributed by # Surendra_Gangwar
C# // C# program to check whether // a subarray is in mountain // form or not using System ; class GFG { // Utility method to construct // left and right array static void preprocess ( int [] arr int N int [] left int [] right ) { // initialize first left // index as that index only left [ 0 ] = 0 ; int lastIncr = 0 ; for ( int i = 1 ; i < N ; i ++ ) { // if current value is // greater than previous // update last increasing if ( arr [ i ] > arr [ i - 1 ]) lastIncr = i ; left [ i ] = lastIncr ; } // initialize last right // index as that index only right [ N - 1 ] = N - 1 ; int firstDecr = N - 1 ; for ( int i = N - 2 ; i >= 0 ; i -- ) { // if current value is // greater than next // update first decreasing if ( arr [ i ] > arr [ i + 1 ]) firstDecr = i ; right [ i ] = firstDecr ; } } // method returns true if // arr[L..R] is in mountain form static bool isSubarrayMountainForm ( int [] arr int [] left int [] right int L int R ) { // return true only if right at // starting range is greater // than left at ending range return ( right [ L ] >= left [ R ]); } // Driver Code static public void Main () { int [] arr = { 2 3 2 4 4 6 3 2 }; int N = arr . Length ; int [] left = new int [ N ]; int [] right = new int [ N ]; preprocess ( arr N left right ); int L = 0 ; int R = 2 ; if ( isSubarrayMountainForm ( arr left right L R )) Console . WriteLine ( 'Subarray is in ' + 'mountain form' ); else Console . WriteLine ( 'Subarray is not ' + 'in mountain form' ); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) Console . WriteLine ( 'Subarray is in ' + 'mountain form' ); else Console . WriteLine ( 'Subarray is not ' + 'in mountain form' ); } } // This code is contributed by aj_36
JavaScript < script > // Javascript program to check whether // a subarray is in mountain // form or not // Utility method to construct // left and right array function preprocess ( arr N left right ) { // initialize first left // index as that index only left [ 0 ] = 0 ; let lastIncr = 0 ; for ( let i = 1 ; i < N ; i ++ ) { // if current value is // greater than previous // update last increasing if ( arr [ i ] > arr [ i - 1 ]) lastIncr = i ; left [ i ] = lastIncr ; } // initialize last right // index as that index only right [ N - 1 ] = N - 1 ; let firstDecr = N - 1 ; for ( let i = N - 2 ; i >= 0 ; i -- ) { // if current value is // greater than next // update first decreasing if ( arr [ i ] > arr [ i + 1 ]) firstDecr = i ; right [ i ] = firstDecr ; } } // method returns true if // arr[L..R] is in mountain form function isSubarrayMountainForm ( arr left right L R ) { // return true only if right at // starting range is greater // than left at ending range return ( right [ L ] >= left [ R ]); } let arr = [ 2 3 2 4 4 6 3 2 ]; let N = arr . length ; let left = new Array ( N ); let right = new Array ( N ); preprocess ( arr N left right ); let L = 0 ; let R = 2 ; if ( isSubarrayMountainForm ( arr left right L R )) document . write ( 'Subarray is in ' + 'mountain form' + ' ' ); else document . write ( 'Subarray is not ' + 'in mountain form' + ' ' ); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) document . write ( 'Subarray is in ' + 'mountain form' ); else document . write ( 'Subarray is not ' + 'in mountain form' ); < /script>
Subarray is in mountain form Subarray is not in mountain form
必要な走査は 2 回だけなので、時間計算量は O(n) です。
長さ n の余分なスペースが 2 つ必要になるため、スペースの複雑さは O(n) になります。