מצא זוגות ייחודיים כך שכל אלמנט קטן או שווה ל-N

מצא זוגות ייחודיים כך שכל אלמנט קטן או שווה ל-N

בהינתן מספר שלם N מצא והראה את מספר הזוגות שעומד בתנאים הבאים:

  • ריבוע המרחק בין שני המספרים האלה שווה ל- LCM מבין שני המספרים הללו.
  • ה GCD של שני המספרים האלה שווה למכפלת שני מספרים שלמים עוקבים.
  • שני המספרים בזוג צריכים להיות קטנים או שווים ל-N.

פֶּתֶק: יש להציג רק את הזוגות שמקיימים את שני התנאים שלעיל בו-זמנית ומספרים אלה חייבים להיות קטנים או שווים ל-N.

דוגמאות:   

  Input:   10   Output:   No. of pairs = 1 Pair no. 1 --> (2 4)   Input:   500   Output:   No. of pairs = 7 Pair no. 1 --> (2 4) Pair no. 2 --> (12 18) Pair no. 3 --> (36 48) Pair no. 4 --> (80 100) Pair no. 5 --> (150 180) Pair no. 6 --> (252 294) Pair no. 7 --> (392 448) 

הֶסבֵּר:
הטבלאות המוצגות להלן יתנו מבט ברור של מה שניתן למצוא:  

מצא זוגות ייחודיים כך שכל אלמנט קטן או שווה ל-N

הטבלאות שלמעלה מציגות GCD שנוצר על ידי מכפלה של שני מספרים עוקבים וכפולות התואמות שלו שבהן קיים UNIQUE PAIR המקביל לכל ערך. ערכים ירוקים בכל שורה יוצרים זוג ייחודי עבור GCD תואם.
פֶּתֶק: בטבלאות לעיל  

  1. עבור כניסה ראשונה GCD=2 ראשון וכפולה שניה של 2 יוצרים את הזוג הייחודי (2 4)
  2. באופן דומה עבור הערך השני GCD=6 2nd וכפולה השלישית של 6 יוצרים את הזוג הייחודי (12 18)
  3. באופן דומה עוברים לכניסה Zth, כלומר עבור GCD = Z*(Z+1), ברור שהזוג הייחודי יכלול מכפילה Zth ו-(Z+1)th של GCD = Z*(Z+1). כעת הכפולה Z של GCD היא Z * (Z*(Z+1)) וכפולה Z+1 של GCD תהיה (Z + 1) * (Z*(Z+1)).
  4. ומכיוון שהמגבלה היא N כך המספר השני בזוג הייחודי חייב להיות קטן או שווה ל-N. אז (Z + 1) * (Z*(Z+1)) <= N. Simplifying it further the desired relation is derived Z 3 + (2*Z 2 ) + Z <=N

זה יוצר דפוס ומהחישוב המתמטי נגזר שעבור N נתון המספר הכולל של זוגות ייחודיים כאלה (נניח Z) יעקוב אחר יחס מתמטי המוצג להלן: 

Z 3  + (2*Z 2 ) + Z  <= N 


להלן היישום הנדרש:  

C
   // C program for finding the required pairs   #include         #include         // Finding the number of unique pairs   int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +     (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )     {      mul     =     i     *     (  i     +     1  );      printf  (  'Pair no. %d --> (%d %d)  n  '        i       (  mul     *     i  )     mul     *     (  i     +     1  ));      }   }   // Driver program to test above functions   int     main  ()   {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );      printf  (  'No. of pairs = %d   n  '       pairs  );      print_pairs  (  pairs  );      return     0  ;   }   
Java
   // Java program for finding   // the required pairs   import     java.io.*  ;   class   GFG      {          // Finding the number      // of unique pairs      static     int     No_Of_Pairs  (  int     N  )      {      int     i     =     1  ;          // Using the derived formula      while     ((  i     *     i     *     i  )     +         (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;          return     (  i     -     1  );      }          // Printing the unique pairs      static     void     print_pairs  (  int     pairs  )      {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )      {      mul     =     i     *     (  i     +     1  );      System  .  out  .  println  (  'Pair no. '     +     i     +     ' --> ('     +         (  mul     *     i  )     +     ' '     +         mul     *     (  i     +     1  )     +     ')'  );         }      }          // Driver code      public     static     void     main     (  String  []     args  )      {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );          System  .  out  .  println  (  'No. of pairs = '     +     pairs  );      print_pairs  (  pairs  );      }   }   // This code is contributed by Mahadev.   
Python3
   # Python3 program for finding the required pairs   # Finding the number of unique pairs   def   No_Of_Pairs  (  N  ):   i   =   1  ;   # Using the derived formula   while   ((  i   *   i   *   i  )   +   (  2   *   i   *   i  )   +   i    <=   N  ):   i   +=   1  ;   return   (  i   -   1  );   # Printing the unique pairs   def   print_pairs  (  pairs  ):   i   =   1  ;   mul   =   0  ;   for   i   in   range  (  1     pairs   +   1  ):   mul   =   i   *   (  i   +   1  );   print  (  'Pair no.'      i     ' --> ('     (  mul   *   i  )   ' '     mul   *   (  i   +   1  )   ')'  );   # Driver Code   N   =   500  ;   i   =   1  ;   pairs   =   No_Of_Pairs  (  N  );   print  (  'No. of pairs = '     pairs  );   print_pairs  (  pairs  );   # This code is contributed   # by mits   
C#
   // C# program for finding   // the required pairs   using     System  ;   class     GFG      {       // Finding the number   // of unique pairs   static     int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +         (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   static     void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )      {      mul     =     i     *     (  i     +     1  );      Console  .  WriteLine  (  'Pair no. '     +     i     +     ' --> ('     +         (  mul     *     i  )     +     ' '     +         mul     *     (  i     +     1  )     +     ')'  );         }   }   // Driver code   static     void     Main  ()   {      int     N     =     500       pairs  ;      pairs     =     No_Of_Pairs  (  N  );      Console  .  WriteLine  (  'No. of pairs = '     +         pairs  );      print_pairs  (  pairs  );   }   }   // This code is contributed by mits   
PHP
      // PHP program for finding    // the required pairs   // Finding the number    // of unique pairs   function   No_Of_Pairs  (  $N  )   {   $i   =   1  ;   // Using the    // derived formula   while   ((  $i   *   $i   *   $i  )   +   (  2   *   $i   *   $i  )   +   $i    <=   $N  )   $i  ++  ;   return   (  $i   -   1  );   }   // Printing the unique pairs   function   print_pairs  (  $pairs  )   {   $i   =   1  ;   $mul  ;   for   (  $i   =   1  ;   $i    <=   $pairs  ;   $i  ++  )   {   $mul   =   $i   *   (  $i   +   1  );   echo   'Pair no.'      $i     ' --> ('      (  $mul   *   $i  )   ' '     $mul   *   (  $i   +   1  )  ')   n  '  ;   }   }   // Driver Code   $N   =   500  ;   $pairs  ;   $mul  ;   $i   =   1  ;   $pairs   =   No_Of_Pairs  (  $N  );   echo   'No. of pairs = '     $pairs      '   n  '  ;   print_pairs  (  $pairs  );   // This code is contributed   // by Akanksha Rai(Abby_akku)   ?>   
JavaScript
    <  script  >   // Javascript program for finding the    // required pairs   // Finding the number of unique pairs   function     No_Of_Pairs  (  N  )   {      let     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +      (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   function     print_pairs  (  pairs  )   {      let     i     =     1       mul  ;      for  (  i     =     1  ;     i      <=     pairs  ;     i  ++  )         {      mul     =     i     *     (  i     +     1  );      document  .  write  (  'Pair no. '     +     i     +         ' --> ('     +     (  mul     *     i  )     +      ' '     +     mul     *     (  i     +     1  )     +         ')  
'
); } } // Driver code let N = 500 pairs mul i = 1 ; pairs = No_Of_Pairs ( N ); document . write ( 'No. of pairs = ' + pairs + '
'
); print_pairs ( pairs ); // This code is contributed by mohit kumar 29 < /script>
C++14
   // C++ code for the above approach:   #include          using     namespace     std  ;   // Finding the number of unique pairs   int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +     (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )     {      mul     =     i     *     (  i     +     1  );      cout      < <     'Pair no. '   < <     i      < <  ' --> ('      < <     (  mul     *     i  )      < <     ' '   < <     mul     *     (  i     +     1  )      < <     ')'      < <  endl  ;;      }   }   // Driver Code   int     main  ()   {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );      cout      < <     'No. of pairs = '      < <     pairs      < <     endl  ;      print_pairs  (  pairs  );      return     0  ;   }   

תְפוּקָה:  
No. of pairs = 7 Pair no. 1 --> (2 4) Pair no. 2 --> (12 18) Pair no. 3 --> (36 48) Pair no. 4 --> (80 100) Pair no. 5 --> (150 180) Pair no. 6 --> (252 294) Pair no. 7 --> (392 448) 

 

מורכבות הזמן : O(N 1/3 )
חלל עזר : O(1)