מצא עלות התאמה מינימלית של מערך

מצא עלות התאמה מינימלית של מערך
נסה את זה ב-GfG Practice #practiceLinkDiv { display: none !חשוב; }

בהינתן מערך של מספרים שלמים חיוביים החלף כל אלמנט במערך כך שההבדל בין אלמנטים סמוכים במערך קטן או שווה למטרה נתונה. עלינו למזער את עלות ההתאמה שהיא סכום ההבדלים בין ערכים חדשים לישנים. אנחנו בעצם צריכים למזער את ?|A[i] - A חָדָשׁ [i]| איפה 0? אני? n-1 n הוא הגודל של A[] ו-A חָדָשׁ [] הוא המערך עם הפרש סמוך קטן או שווה למטרה. נניח שכל הרכיבים של המערך קטן מקבוע M = 100.

דוגמאות:  

    Input:     arr = [1 3 0 3] target = 1   
Output: Minimum adjustment cost is 3
Explanation: One of the possible solutions
is [2 3 2 3]
Input: arr = [2 3 2 3] target = 1
Output: Minimum adjustment cost is 0
Explanation: All adjacent elements in the input
array are already less than equal to given target
Input: arr = [55 77 52 61 39 6
25 60 49 47] target = 10
Output: Minimum adjustment cost is 75
Explanation: One of the possible solutions is
[55 62 52 49 39 29 30 40 49 47]
Recommended Practice מצא עלות התאמה מינימלית של מערך נסה את זה!

על מנת למזער את עלות ההתאמה ?|A[i] - א חָדָשׁ [i]| עבור כל index i במערך |A[i] - A חָדָשׁ [i]| צריך להיות קרוב לאפס ככל האפשר. גם |A[i] - א חָדָשׁ [i+1] ]| ? יַעַד.
ניתן לפתור בעיה זו על ידי תכנות דינמי .

תן ל-dp[i][j] להגדיר עלות התאמה מינימלית על שינוי A[i] ל-j, אז היחס DP מוגדר על ידי - 

 dp[i][j] = min{dp[i - 1][k]} + |j - A[i]|   
for all k's such that |k - j| ? target

כאן 0? אני? n ו-0? j ? M כאשר n הוא מספר האלמנטים במערך ו-M = 100. עלינו לשקול את כל k כך ש-max(j - target 0) ? k ? min(M j + יעד)
לבסוף עלות ההתאמה המינימלית של המערך תהיה min{dp[n - 1][j]} עבור כל 0 ? j ? מ.

אַלגוֹרִיתְם:

  • צור מערך דו-ממדי עם האתחולים dp[n][M+1] כדי לרשום את עלות ההתאמה הנמוכה ביותר של שינוי A[i] ל-j כאשר n הוא אורך המערך ו-M הוא הערך המרבי שלו.
  • חשב את עלות ההתאמה הקטנה ביותר של שינוי A[0] ל-j עבור הרכיב הראשון של המערך dp[0][j] באמצעות הנוסחה dp[0][j] = abs (j - A[0]).
  • החלף את A[i] ב-j ברכיבי המערך הנותרים dp[i][j] והשתמש בנוסחה dp[i][j] = min(dp[i-1][k] + abs(A[i] - j)) כאשר k לוקח את כל הערכים האפשריים בין max(j-target0) ל-min(Mj+target) כדי לקבל את עלות ההתאמה המינימלית.
  • כעלות ההתאמה המינימלית תן את המספר הנמוך ביותר מהשורה האחרונה של טבלת dp. 

להלן יישום הרעיון לעיל:

C++
   // C++ program to find minimum adjustment cost of an array   #include          using     namespace     std  ;   #define M 100   // Function to find minimum adjustment cost of an array   int     minAdjustmentCost  (  int     A  []     int     n       int     target  )   {      // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      int     dp  [  n  ][  M     +     1  ];      // handle first element of array separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     abs  (  j     -     A  [  0  ]);      // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     INT_MAX  ;      // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      for     (  int     k     =     max  (  j  -  target    0  );     k      <=     min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     min  (  dp  [  i  ][  j  ]     dp  [  i     -     1  ][  k  ]     +     abs  (  A  [  i  ]     -     j  ));      }      }         // return minimum value from last row of dp table      int     res     =     INT_MAX  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     min  (  res       dp  [  n     -     1  ][  j  ]);      return     res  ;   }   // Driver Program to test above functions   int     main  ()   {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     target     =     10  ;      cout      < <     'Minimum adjustment cost is '       < <     minAdjustmentCost  (  arr       n       target  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find minimum adjustment cost of an array   import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      public     static     int     M     =     100  ;          // Function to find minimum adjustment cost of an array      static     int     minAdjustmentCost  (  int     A  []       int     n       int     target  )      {      // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      int  [][]     dp     =     new     int  [  n  ][  M     +     1  ]  ;          // handle first element of array separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]  );          // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     Integer  .  MAX_VALUE  ;          // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      int     k     =     Math  .  max  (  j  -  target    0  );      for     (     ;     k      <=     Math  .  min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     Math  .  min  (  dp  [  i  ][  j  ]       dp  [  i     -     1  ][  k  ]     +         Math  .  abs  (  A  [  i  ]     -     j  ));      }      }             // return minimum value from last row of dp table      int     res     =     Integer  .  MAX_VALUE  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  n     -     1  ][  j  ]  );          return     res  ;      }          // Driver program      public     static     void     main     (  String  []     args  )         {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     arr  .  length  ;      int     target     =     10  ;          System  .  out  .  println  (  'Minimum adjustment cost is '      +  minAdjustmentCost  (  arr       n       target  ));      }   }   // This code is contributed by Pramod Kumar   
Python3
   # Python3 program to find minimum   # adjustment cost of an array    M   =   100   # Function to find minimum   # adjustment cost of an array   def   minAdjustmentCost  (  A     n     target  ):   # dp[i][j] stores minimal adjustment    # cost on changing A[i] to j    dp   =   [[  0   for   i   in   range  (  M   +   1  )]   for   i   in   range  (  n  )]   # handle first element   # of array separately   for   j   in   range  (  M   +   1  ):   dp  [  0  ][  j  ]   =   abs  (  j   -   A  [  0  ])   # do for rest elements    # of the array    for   i   in   range  (  1     n  ):   # replace A[i] to j and    # calculate minimal adjustment   # cost dp[i][j]    for   j   in   range  (  M   +   1  ):   # initialize minimal adjustment   # cost to INT_MAX   dp  [  i  ][  j  ]   =   100000000   # consider all k such that   # k >= max(j - target 0) and   # k  <= min(M j + target) and    # take minimum   for   k   in   range  (  max  (  j   -   target     0  )   min  (  M     j   +   target  )   +   1  ):   dp  [  i  ][  j  ]   =   min  (  dp  [  i  ][  j  ]   dp  [  i   -   1  ][  k  ]   +   abs  (  A  [  i  ]   -   j  ))   # return minimum value from    # last row of dp table   res   =   10000000   for   j   in   range  (  M   +   1  ):   res   =   min  (  res     dp  [  n   -   1  ][  j  ])   return   res   # Driver Code    arr  =   [  55     77     52     61     39     6     25     60     49     47  ]   n   =   len  (  arr  )   target   =   10   print  (  'Minimum adjustment cost is'     minAdjustmentCost  (  arr     n     target  )   sep   =   ' '  )   # This code is contributed    # by sahilshelangia   
C#
   // C# program to find minimum adjustment   // cost of an array   using     System  ;   class     GFG     {          public     static     int     M     =     100  ;          // Function to find minimum adjustment      // cost of an array      static     int     minAdjustmentCost  (  int     []  A       int     n        int     target  )      {          // dp[i][j] stores minimal adjustment      // cost on changing A[i] to j      int  []     dp     =     new     int  [  n    M     +     1  ];      // handle first element of array      // separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0    j  ]     =     Math  .  Abs  (  j     -     A  [  0  ]);      // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate      // minimal adjustment cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment      // cost to INT_MAX      dp  [  i    j  ]     =     int  .  MaxValue  ;      // consider all k such that       // k >= max(j - target 0) and      // k  <= min(M j + target) and      // take minimum      int     k     =     Math  .  Max  (  j     -     target       0  );          for     (     ;     k      <=     Math  .  Min  (  M       j     +      target  );     k  ++  )      dp  [  i    j  ]     =     Math  .  Min  (  dp  [  i    j  ]      dp  [  i     -     1    k  ]      +     Math  .  Abs  (  A  [  i  ]     -     j  ));      }      }         // return minimum value from last      // row of dp table      int     res     =     int  .  MaxValue  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  Min  (  res       dp  [  n     -     1    j  ]);      return     res  ;      }          // Driver program      public     static     void     Main     ()         {      int     []  arr     =     {  55       77       52       61       39        6       25       60       49       47  };      int     n     =     arr  .  Length  ;      int     target     =     10  ;      Console  .  WriteLine  (  'Minimum adjustment'      +     ' cost is '      +     minAdjustmentCost  (  arr       n       target  ));      }   }   // This code is contributed by Sam007.   
JavaScript
    <  script  >      // Javascript program to find minimum adjustment cost of an array      let     M     =     100  ;          // Function to find minimum adjustment cost of an array      function     minAdjustmentCost  (  A       n       target  )      {          // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      let     dp     =     new     Array  (  n  );      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      {      dp  [  i  ]     =     new     Array  (  n  );      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      {      dp  [  i  ][  j  ]     =     0  ;      }      }          // handle first element of array separately      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]);          // do for rest elements of the array      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     Number  .  MAX_VALUE  ;          // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      let     k     =     Math  .  max  (  j  -  target    0  );      for     (     ;     k      <=     Math  .  min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     Math  .  min  (  dp  [  i  ][  j  ]     dp  [  i     -     1  ][  k  ]     +         Math  .  abs  (  A  [  i  ]     -     j  ));      }      }             // return minimum value from last row of dp table      let     res     =     Number  .  MAX_VALUE  ;         for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  n     -     1  ][  j  ]);          return     res  ;      }          let     arr     =     [  55       77       52       61       39       6       25       60       49       47  ];      let     n     =     arr  .  length  ;      let     target     =     10  ;      document  .  write  (  'Minimum adjustment cost is '      +  minAdjustmentCost  (  arr       n       target  ));          // This code is contributed by decode2207.    <  /script>   
PHP
      // PHP program to find minimum    // adjustment cost of an array   $M   =   100  ;   // Function to find minimum    // adjustment cost of an array   function   minAdjustmentCost  (   $A     $n     $target  )   {   // dp[i][j] stores minimal    // adjustment cost on changing   // A[i] to j   global   $M  ;   $dp   =   array  (  array  ());   // handle first element    // of array separately   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   $dp  [  0  ][  $j  ]   =   abs  (  $j   -   $A  [  0  ]);   // do for rest    // elements of the array   for  (  $i   =   1  ;   $i    <   $n  ;   $i  ++  )   {   // replace A[i] to j and    // calculate minimal adjustment   // cost dp[i][j]   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   {   // initialize minimal adjustment   // cost to INT_MAX   $dp  [  $i  ][  $j  ]   =   PHP_INT_MAX  ;   // consider all k such that    // k >= max(j - target 0) and   // k  <= min(M j + target) and   // take minimum   for  (  $k   =   max  (  $j   -   $target     0  );   $k    <=   min  (  $M     $j   +   $target  );   $k  ++  )   $dp  [  $i  ][  $j  ]   =   min  (  $dp  [  $i  ][  $j  ]   $dp  [  $i   -   1  ][  $k  ]   +   abs  (  $A  [  $i  ]   -   $j  ));   }   }   // return minimum value    // from last row of dp table   $res   =   PHP_INT_MAX  ;   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   $res   =   min  (  $res     $dp  [  $n   -   1  ][  $j  ]);   return   $res  ;   }   // Driver Code   $arr   =   array  (  55     77     52     61     39     6     25     60     49     47  );   $n   =   count  (  $arr  );   $target   =   10  ;   echo   'Minimum adjustment cost is '      minAdjustmentCost  (  $arr     $n     $target  );   // This code is contributed by anuj_67.   ?>   

תְפוּקָה
Minimum adjustment cost is 75 

מורכבות זמן: O(n*m 2 )
מרחב עזר: O(n *m)


גישה יעילה: אופטימיזציה של שטח

בגישה הקודמת הערך הנוכחי dp[i][j] תלוי רק בערכי השורה הנוכחית והקודמת של DP . אז כדי לייעל את מורכבות החלל אנו משתמשים במערך 1D יחיד כדי לאחסן את החישובים.

שלבי יישום:

  • צור וקטור 1D dp של גודל m+1 .
  • הגדר מקרה בסיסי על ידי אתחול הערכים של DP .
  • כעת חזור על בעיות משנה בעזרת לולאה מקוננת וקבל את הערך הנוכחי מחישובים קודמים.
  • כעת צור וקטור 1D זמני prev_dp משמש לאחסון הערכים הנוכחיים מחישובים קודמים.
  • לאחר כל איטרציה הקצה את הערך של prev_dp ל-dp לאיטרציה נוספת.
  • אתחול משתנה מילואים כדי לאחסן את התשובה הסופית ולעדכן אותה על ידי איטרציה דרך ה-Dp.
  • בסוף החזר והדפיס את התשובה הסופית המאוחסנת ב מילואים .

יישום: 
 

C++
   #include          using     namespace     std  ;   #define M 100   // Function to find minimum adjustment cost of an array   int     minAdjustmentCost  (  int     A  []     int     n       int     target  )   {      int     dp  [  M     +     1  ];     // Array to store the minimum adjustment costs for each value      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  j  ]     =     abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      int     prev_dp  [  M     +     1  ];      memcpy  (  prev_dp       dp       sizeof  (  dp  ));     // Store the previous row's minimum costs      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     INT_MAX  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     max  (  j     -     target       0  );     k      <=     min  (  M       j     +     target  );     k  ++  )      dp  [  j  ]     =     min  (  dp  [  j  ]     prev_dp  [  k  ]     +     abs  (  A  [  i  ]     -     j  ));      }      }      int     res     =     INT_MAX  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      return     res  ;     // Return the minimum adjustment cost   }   int     main  ()   {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     target     =     10  ;      cout      < <     'Minimum adjustment cost is '       < <     minAdjustmentCost  (  arr       n       target  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   MinimumAdjustmentCost     {      static     final     int     M     =     100  ;      // Function to find the minimum adjustment cost of an array      static     int     minAdjustmentCost  (  int  []     A       int     n       int     target  )     {      int  []     dp     =     new     int  [  M     +     1  ]  ;      // Initialize the first row with absolute differences      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      dp  [  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]  );      }      // Iterate over the array elements      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      int  []     prev_dp     =     Arrays  .  copyOf  (  dp       dp  .  length  );     // Store the previous row's minimum costs      // Iterate over the possible values      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      dp  [  j  ]     =     Integer  .  MAX_VALUE  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     Math  .  max  (  j     -     target       0  );     k      <=     Math  .  min  (  M       j     +     target  );     k  ++  )     {      dp  [  j  ]     =     Math  .  min  (  dp  [  j  ]       prev_dp  [  k  ]     +     Math  .  abs  (  A  [  i  ]     -     j  ));      }      }      }      int     res     =     Integer  .  MAX_VALUE  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      res     =     Math  .  min  (  res       dp  [  j  ]  );     // Find the minimum cost in the last row      }      return     res  ;     // Return the minimum adjustment cost      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {     55       77       52       61       39       6       25       60       49       47     };      int     n     =     arr  .  length  ;      int     target     =     10  ;      System  .  out  .  println  (  'Minimum adjustment cost is '     +     minAdjustmentCost  (  arr       n       target  ));      }   }   
Python3
   def   min_adjustment_cost  (  A     n     target  ):   M   =   100   dp   =   [  0  ]   *   (  M   +   1  )   # Initialize the first row of dp with absolute differences   for   j   in   range  (  M   +   1  ):   dp  [  j  ]   =   abs  (  j   -   A  [  0  ])   # Iterate over the array elements   for   i   in   range  (  1     n  ):   prev_dp   =   dp  [:]   # Store the previous row's minimum costs   for   j   in   range  (  M   +   1  ):   dp  [  j  ]   =   float  (  'inf'  )   # Initialize the current value with maximum cost   # Find the minimum cost by considering the range of previous values   for   k   in   range  (  max  (  j   -   target     0  )   min  (  M     j   +   target  )   +   1  ):   dp  [  j  ]   =   min  (  dp  [  j  ]   prev_dp  [  k  ]   +   abs  (  A  [  i  ]   -   j  ))   res   =   float  (  'inf'  )   for   j   in   range  (  M   +   1  ):   res   =   min  (  res     dp  [  j  ])   # Find the minimum cost in the last row   return   res   if   __name__   ==   '__main__'  :   arr   =   [  55     77     52     61     39     6     25     60     49     47  ]   n   =   len  (  arr  )   target   =   10   print  (  'Minimum adjustment cost is'     min_adjustment_cost  (  arr     n     target  ))   
C#
   using     System  ;   class     Program   {      const     int     M     =     100  ;      // Function to find minimum adjustment cost of an array      static     int     MinAdjustmentCost  (  int  []     A       int     n       int     target  )      {      int  []     dp     =     new     int  [  M     +     1  ];     // Array to store the minimum adjustment costs for each value      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      dp  [  j  ]     =     Math  .  Abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      }      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      int  []     prevDp     =     (  int  [])  dp  .  Clone  ();     // Store the previous row's minimum costs      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     int  .  MaxValue  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     Math  .  Max  (  j     -     target       0  );     k      <=     Math  .  Min  (  M       j     +     target  );     k  ++  )      {      dp  [  j  ]     =     Math  .  Min  (  dp  [  j  ]     prevDp  [  k  ]     +     Math  .  Abs  (  A  [  i  ]     -     j  ));      }      }      }      int     res     =     int  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      res     =     Math  .  Min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      }      return     res  ;     // Return the minimum adjustment cost      }      static     void     Main  ()      {      int  []     arr     =     {     55       77       52       61       39       6       25       60       49       47     };      int     n     =     arr  .  Length  ;      int     target     =     10  ;      Console  .  WriteLine  (  'Minimum adjustment cost is '     +     MinAdjustmentCost  (  arr       n       target  ));      }   }   
JavaScript
   const     M     =     100  ;   // Function to find minimum adjustment cost of an array   function     minAdjustmentCost  (  A       n       target  )     {      let     dp     =     new     Array  (  M     +     1  );     // Array to store the minimum adjustment costs for each value      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      let     prev_dp     =     [...  dp  ];     // Store the previous row's minimum costs      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     Number  .  MAX_VALUE  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  let     k     =     Math  .  max  (  j     -     target       0  );     k      <=     Math  .  min  (  M       j     +     target  );     k  ++  )      dp  [  j  ]     =     Math  .  min  (  dp  [  j  ]     prev_dp  [  k  ]     +     Math  .  abs  (  A  [  i  ]     -     j  ));      }      }      let     res     =     Number  .  MAX_VALUE  ;      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      return     res  ;     // Return the minimum adjustment cost   }   let     arr     =     [  55       77       52       61       39       6       25       60       49       47  ];   let     n     =     arr  .  length  ;   let     target     =     10  ;   console  .  log  (  'Minimum adjustment cost is '     +     minAdjustmentCost  (  arr       n       target  ));   // This code is contributed by Kanchan Agarwal   


תְפוּקָה

 Minimum adjustment cost is 75   

מורכבות זמן: O(n*m 2 )
מרחב עזר: O (מ)