Minimális lépések a cél eléréséhez egy lovag által | 2. készlet

Minimális lépések a cél eléréséhez egy lovag által | 2. készlet

Adott egy N x N méretű négyzetes sakktábla, a lovag pozíciója és a célpont helyzete azt a feladatot kapja, hogy megtudja, hogy egy lovag milyen minimális lépéseket tesz a célpozíció eléréséhez.
 

Minimális lépések a cél eléréséhez egy lovag által | 2. készlet


Példák: 
 

Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3 


 


A fenti probléma megoldására szolgáló BFS-megközelítést már tárgyaltuk a előző hozzászólás. Ebben a bejegyzésben egy dinamikus programozási megoldást tárgyalunk.
A megközelítés magyarázata:  
 

    1. eset: Ha a cél nincs a lovag pozíciójának egy sorában vagy oszlopában. 
    Legyen egy 8 x 8 cellás sakktábla. Tegyük fel, hogy a lovag a (3 3) pontban van, a cél pedig a (7 8) helyen van. A lovag jelenlegi pozíciójából 8 lépés lehetséges, azaz (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). De ezek közül csak két mozdulat (5 4) és (4 5) lesz a cél felé, a többi pedig távolodik a céltól. Tehát a minimális lépések megtalálásához lépjen a (4 5) vagy az (5 4) pontra. Most számítsa ki a (4 5) és (5 4) értékekből a cél eléréséhez megtett minimális lépéseket. Ezt dinamikus programozással számítják ki. Így ez a (3 3) és (7 8) közötti minimális lépéseket eredményezi. 2. eset: Ha a célpont a lovag pozíciójának egy sora vagy oszlopa mentén van. 
    Legyen egy 8 x 8 cellás sakktábla. Most tegyük fel, hogy a lovag a (4 3) pontban van, a cél pedig a (4 7) pontban van. 8 mozgás lehetséges, de a cél felé csak 4 lépés van, azaz (5 5) (3 5) (2 4) (6 4). Mivel (5 5) ekvivalens (3 5) és (2 4) (6 4). Tehát ebből a 4 pontból 2 pontra váltható. (5 5) és (6 4) (itt) felvétele. Most számítsa ki a két pontból megtett minimális lépéseket a cél eléréséhez. Ezt dinamikus programozással számítják ki. Így ez a (4 3) és (4 7) közötti minimális lépéseket eredményezi.


Kivétel: Amikor a lovag a sarokban lesz, és a cél olyan, hogy az x és y koordináták különbsége a lovag pozíciójával (1 1) vagy fordítva. Ekkor a minimális lépésszám 4 lesz.
Dinamikus programozási egyenlet: 
 

1) dp[diffOfX][diffOfY] a lovag pozíciójától a célpontig megtett minimális lépések száma.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
ahol diffOfX = különbség a lovag x-koordinátája és a célpont x-koordinátája között 
diffOfY = különbség a lovag y-koordinátája és a célpont y-koordinátája között 
 


Az alábbiakban bemutatjuk a fenti megközelítés megvalósítását: 
 

C++
   // C++ code for minimum steps for   // a knight to reach target position   #include          using     namespace     std  ;   // initializing the matrix.   int     dp  [  8  ][  8  ]     =     {     0     };   int     getsteps  (  int     x       int     y           int     tx       int     ty  )   {      // if knight is on the target       // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     !=     0  )      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      int     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).      dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     =         min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [  abs  (  y     -     ty  )][  abs  (  x     -     tx  )]     =         dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      }      }   }   // Driver Code   int     main  ()   {      int     i       n       x       y       tx       ty       ans  ;          // size of chess board n*n      n     =     100  ;          // (x y) coordinate of the knight.      // (tx ty) coordinate of the target position.      x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.      if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||         (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||         (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||         (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;      else     {      // dp[a][b] here a b is the difference of      // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      cout      < <     ans      < <     endl  ;      return     0  ;   }   
Java
   //Java code for minimum steps for    // a knight to reach target position    public     class   GFG     {   // initializing the matrix.       static     int     dp  [][]     =     new     int  [  8  ][  8  ]  ;      static     int     getsteps  (  int     x       int     y        int     tx       int     ty  )     {      // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {      return     dp  [  0  ][  0  ]  ;      }     else     // if already calculated then return       // that value. Taking absolute difference.       if     (  dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]     !=     0  )     {      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }     else     {      // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;      // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]      =     Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;      // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .  abs  (  y     -     ty  )  ][     Math  .  abs  (  x     -     tx  )  ]      =     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }      }   // Driver Code       static     public     void     main  (  String  []     args  )     {      int     i       n       x       y       tx       ty       ans  ;      // size of chess board n*n       n     =     100  ;      // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )      ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )      ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )      ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )      ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     {      // dp[a][b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      System  .  out  .  println  (  ans  );      }   }   /*This code is contributed by PrinciRaj1992*/   
Python3
   # Python3 code for minimum steps for   # a knight to reach target position   # initializing the matrix.   dp   =   [[  0   for   i   in   range  (  8  )]   for   j   in   range  (  8  )];   def   getsteps  (  x     y     tx     ty  ):   # if knight is on the target   # position return 0.   if   (  x   ==   tx   and   y   ==   ty  ):   return   dp  [  0  ][  0  ];   # if already calculated then return   # that value. Taking absolute difference.   elif  (  dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   !=   0  ):   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   else  :   # there will be two distinct positions   # from the knight towards a target.   # if the target is in same row or column   # as of knight then there can be four   # positions towards the target but in that   # two would be the same and the other two   # would be the same.   x1     y1     x2     y2   =   0     0     0     0  ;   # (x1 y1) and (x2 y2) are two positions.   # these can be different according to situation.   # From position of knight the chess board can be   # divided into four blocks i.e.. N-E E-S S-W W-N .   if   (  x    <=   tx  ):   if   (  y    <=   ty  ):   x1   =   x   +   2  ;   y1   =   y   +   1  ;   x2   =   x   +   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   +   2  ;   y1   =   y   -   1  ;   x2   =   x   +   1  ;   y2   =   y   -   2  ;   elif   (  y    <=   ty  ):   x1   =   x   -   2  ;   y1   =   y   +   1  ;   x2   =   x   -   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   -   2  ;   y1   =   y   -   1  ;   x2   =   x   -   1  ;   y2   =   y   -   2  ;   # ans will be 1 + minimum of steps   # required from (x1 y1) and (x2 y2).   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   =    min  (  getsteps  (  x1     y1     tx     ty  )   getsteps  (  x2     y2     tx     ty  ))   +   1  ;   # exchanging the coordinates x with y of both   # knight and target will result in same ans.   dp  [  abs  (  y   -   ty  )][  abs  (  x   -   tx  )]   =    dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   # Driver Code   if   __name__   ==   '__main__'  :   # size of chess board n*n   n   =   100  ;   # (x y) coordinate of the knight.   # (tx ty) coordinate of the target position.   x   =   4  ;   y   =   5  ;   tx   =   1  ;   ty   =   1  ;   # (Exception) these are the four corner points   # for which the minimum steps is 4.   if   ((  x   ==   1   and   y   ==   1   and   tx   ==   2   and   ty   ==   2  )   or   (  x   ==   2   and   y   ==   2   and   tx   ==   1   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   1   and   y   ==   n   and   tx   ==   2   and   ty   ==   n   -   1  )   or   (  x   ==   2   and   y   ==   n   -   1   and   tx   ==   1   and   ty   ==   n  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   1   and   tx   ==   n   -   1   and   ty   ==   2  )   or   (  x   ==   n   -   1   and   y   ==   2   and   tx   ==   n   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   n   and   tx   ==   n   -   1   and   ty   ==   n   -   1  )   or   (  x   ==   n   -   1   and   y   ==   n   -   1   and   tx   ==   n   and   ty   ==   n  )):   ans   =   4  ;   else  :   # dp[a][b] here a b is the difference of   # x & tx and y & ty respectively.   dp  [  1  ][  0  ]   =   3  ;   dp  [  0  ][  1  ]   =   3  ;   dp  [  1  ][  1  ]   =   2  ;   dp  [  2  ][  0  ]   =   2  ;   dp  [  0  ][  2  ]   =   2  ;   dp  [  2  ][  1  ]   =   1  ;   dp  [  1  ][  2  ]   =   1  ;   ans   =   getsteps  (  x     y     tx     ty  );   print  (  ans  );   # This code is contributed by PrinciRaj1992   
C#
   // C# code for minimum steps for    // a knight to reach target position    using     System  ;   public     class     GFG  {   // initializing the matrix.       static     int     [          ]  dp     =     new     int  [  8          8  ];         static     int     getsteps  (  int     x       int     y           int     tx       int     ty  )     {         // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {         return     dp  [  0          0  ];         }     else     // if already calculated then return       // that value. Taking Absolute difference.       if     (  dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]     !=     0  )     {         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }     else     {         // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;         // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {         if     (  y      <=     ty  )     {         x1     =     x     +     2  ;         y1     =     y     +     1  ;         x2     =     x     +     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     +     2  ;         y1     =     y     -     1  ;         x2     =     x     +     1  ;         y2     =     y     -     2  ;         }         }     else     if     (  y      <=     ty  )     {         x1     =     x     -     2  ;         y1     =     y     +     1  ;         x2     =     x     -     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     -     2  ;         y1     =     y     -     1  ;         x2     =     x     -     1  ;         y2     =     y     -     2  ;         }         // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]         =     Math  .  Min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;         // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .     Abs  (  y     -     ty  )          Math  .     Abs  (  x     -     tx  )]         =     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }         }      // Driver Code       static     public     void     Main  ()     {         int     i       n       x       y       tx       ty       ans  ;         // size of chess board n*n       n     =     100  ;         // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;         y     =     5  ;         tx     =     1  ;         ty     =     1  ;         // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )         ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )         ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )         ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )         ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     {         // dp[a  b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1          0  ]     =     3  ;         dp  [  0          1  ]     =     3  ;         dp  [  1          1  ]     =     2  ;         dp  [  2          0  ]     =     2  ;         dp  [  0          2  ]     =     2  ;         dp  [  2          1  ]     =     1  ;         dp  [  1          2  ]     =     1  ;         ans     =     getsteps  (  x       y       tx       ty  );         }         Console  .  WriteLine  (  ans  );         }      }      /*This code is contributed by PrinciRaj1992*/   
JavaScript
    <  script  >   // JavaScript code for minimum steps for   // a knight to reach target position   // initializing the matrix.   let     dp     =     new     Array  (  8  )   for  (  let     i  =  0  ;  i   <  8  ;  i  ++  ){      dp  [  i  ]     =     new     Array  (  8  ).  fill  (  0  )   }   function     getsteps  (  x    y    tx    ty  )   {      // if knight is on the target      // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     !=     0  )      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      let     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps      // required from (x1 y1) and (x2 y2).      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     =      Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [(  Math  .  abs  (  y     -     ty  ))][(  Math  .  abs  (  x     -     tx  ))]     =      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      }      }   }   // Driver Code   let     i       n       x       y       tx       ty       ans  ;   // size of chess board n*n   n     =     100  ;   // (x y) coordinate of the knight.   // (tx ty) coordinate of the target position.   x     =     4  ;   y     =     5  ;   tx     =     1  ;   ty     =     1  ;   // (Exception) these are the four corner points   // for which the minimum steps is 4.   if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||   (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||      (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||      (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;   else      {   // dp[a][b] here a b is the difference of   // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );   }   document  .  write  (  ans    ' 
'
); // This code is contributed by shinjanpatra. < /script>

Kimenet:  
3 

 

Időbeli összetettség: O(N * M) ahol N a sorok teljes száma, M pedig az oszlopok száma
Kiegészítő tér: O(N*M) 

Kvíz létrehozása